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the degree of Doctor of Philosophy

ABSTRACT

This thesis studies the dynamics of a rotating compressible gas sphere, driven by
internal convection, as a model for the dynamics on the giant planets. We develop
a new general circulation model for the Jovian atmosphere, based on the MITgem
dynamical core augmenting the nonhydrostatic model. The grid extends deep into
the planet’s interior allowing the model to compute the dynamics of a whole sphere
of gas rather than a spherical shell (including the strong variations in gravity and the
equation of state). Different from most previous 3D convection models, this model is
anelastic rather than Boussinesq and thereby incorporates the full density variation
of the planet.

We show that the density gradients caused by convection drive the system away
from an isentropic and therefore barotropic state as previously assumed, leading to
significant baroclinic shear. This shear is concentrated mainly in the upper levels
and associated with baroclinic compressibility effects. The interior flow organizes
in large cyclonically rotating columnar eddies parallel to the rotation axis, which
drive upgradient angular momentum eddy fluxes, generating the observed equatorial
superrotation. Heat fluxes align with the axis of rotation, contributing to the observed
flat meridional emission. We show the transition from weak convection cases with
symmetric spiraling columnar modes similar to those found in previous analytic linear
theory, to more turbulent cases which exhibit similar, though less regular and solely
cyclonic, convection columns which manifest on the surface in the form of waves
embedded within the superrotation. We develop a mechanical understanding of this
system and scaling laws by studying simpler configurations and the dependence on
physical properties such as the rotation period, bottom boundary location and forcing
structure.

These columnar cyclonic structures propagate eastward, driven by dynamics sim-
ilar to that of a Rossby wave except that the restoring planetary vorticity gradient




is in the opposite direction, due to the spherical geometry in the interior. We fur-
ther study these interior dynamics using a simplified barotropic annulus model, which
shows that the planetary vorticity radial variation causes the eddy angular momen-
tum flux divergence, which drives the superrotating equatorial flow. In addition we
study the interaction of the interior dynamics with a stable exterior weather layer,
using a quasigeostrophic two layer channel model on a beta plane, where the colum-
nar interior is therefore represented by a negative beta effect. We find that baroclinic
instability of even a weak shear can drive strong, stable multiple zonal jets. For this
model we find an analytic nonlinear solution, truncated to one growing mode, that
exhibits a multiple jet meridional structure, driven by the nonlinear interaction be-
tween the eddies. Finally, given the density field from our 3D convection model we
derive the high order gravitational spectra of Jupiter, which is a measurable quantity
for the upcoming JUNO mission to Jupiter.

Thesis Supervisor: Glenn R. Flierl
Title: Professor, Massachusetts Institute of Technology
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Chapter 1

Introduction

1.1 Motivation

The study of Geophysical Fluid dynamics (GFD) has evolved tremendously over the
past 60 years. Although not complete, we have today a good basic understanding of
many of the physical processes governing the dynamics of Earth’s oceans and atmo-
sphere. Many of the unresolved complexities come from the complicated interactions
with continental boundaries, ice, topography, ocean bathymetry, and air-sea interac-
tions. The giant planets which are mainly homogeneous fluid objects do not have
many of these complexities and, due to their fast rotation and large scales, could be
considered as “ideal” GFD objects. Yet, much of the dynamics on these objects are
still poorly understood. These planets reveal some of the most striking dynamical
phenomena in the solar system such as intense multiple jet streams and long-lived
Earth-sized storms. Therefore studying of the dynamics of the giant planets brings
opportunity for understanding how such deep atmosphere may work and gives a crit-

ical insight to our understanding of basic GFD phenomena.

1.2 The Atmospheres of the Giant Planets of the
Solar System

The four outer planets of the solar system are mainly fluid objects. Due to the light
elements constituting these planets they do not condense at solar system temperatures

and therefore do not have a solid surface; rather their atmospheres are deep and merge
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smoothly with the planet’s fluid interiors. Despite their size they all rotate faster than
Earth, and all have latitudinal banding and high-speed jet streams. Weather patterns
have a time-scale ranging from weeks to centuries, and internal heat sources, due to
gravitational contraction, are big and comparable in strength to the external heating
from the sun. Even Uranus, whose rotation axis is tipped in 98° relative to its orbital
axis, still exhibits many of the same phenomena. Here we review the characteristics

obtained by observations of the atmospheres of Jupiter, Saturn, Uranus and Neptune.

1.2.1 The Wind Structure

Zonal Jets: The dominant feature on all the outer planets are strong zonal jets.
Both Jupiter and Saturn have strong prograde eastward equatorial jets around the
equator with weaker multiple east-west zonal jets away from the equator in each
hemisphere. On Jupiter the equatorial superrotating region extends 17° in latitude
north and south of the equator (Figure 1.1), with a maximum wind speed of 140m/s,
whereas on the Saturn wind speed of the equatorial eastward jet reaches 400 m/s near
the equator, and the equatorial superrotation extends roughly 30° north and south of
the equator. The Jupiter superrotating equatorial jet has two peaks located 8° off the
equator in both hemispheres with a 30% dip in zonal velocity from maximum values
at the equator itself. Wind speed measurements are made in reference to system III,
a uniform rotation rate which is defined by radio emission measurements that are tied
to the magnetic field which is presumably aligned with the bulk interior.

Beyond the equatorial eastward jet, Jupiter has at least six more pairs of east-west
zonal jets in each hemisphere with winds with a maximum of 30 — 50 m/s , includ-
ing one stronger jet at 24N with an eastward wind reaching 130 m/s . Most jets on
Jupiter have the character of a sharper eastward than westward jet, which may be a
consequence of the barotropic stability limit and associated with the positive plan-
etary vorticity gradient (see discussion in section 7.6). Until the Cassini spacecraft
observations (Porco et al., 2003) it was thought that Jupiter’s jets extend only up to
midlatitudes, but these observations confirmed that the jets extend (though weaker
than in the low latitudes), all the way to latitude 80° in both hemispheres. In the
high latitudes however, the zonal jets are not associated with cloud bands.

Wind velocities are deduced from cloud tracking and therefore the assumption

that clouds are passive tracers of the wind is inherent to these wind measurements.
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The lack of topography and the longevity of the cloud features on Jupiter are factors
that should reduce the uncertainty of these measurements. Nevertheless, if the cloud
brightness or contrast is correlated to the dynamics, results might be biased (Vasavada
and Showman, 2005). Observed streamlines seem not to overlap (Ingersoll, 1990) so
the observed features seem to represent a single layer near the top of the clouds. Over
the past 40 years of modern measurements, Jupiter’s zonal wind profile has remained
nearly constant. The only significant change was a decrease of 40 — 50 m/s in the
eastward jet near 24N (Simon, 1999). Smaller changes have been detected near the

equatorial region and near the jet at 50N.

l Jupiter  Saturn  Uranus Neptuue]

Equatorial radius (10® km) 71.74 60.27 25.56 24.76
Oblateness (% (R — Rp)/Re) 6.5 9.8 2.3 1.7
Mass (10%¢ Kg) 18.99 5.68 0.86 1.03
Mean density (Kgm™2) 1330 700 1270 1760
Sidereal day (hr:min) 9:55 10:39 17:14 16:06
Solar distance (AU) 5.2 9.5 19.2 30.1
Sidereal period (years) 11.9 29.5 84 165
Obliquity i 272 98° 29°
H-He fraction of mass 99.99 99.8 98.4 97.9
Equilibrium radiating temperature (K) 110 82 58 47
Solar Flux Wi ~2 50.66 14.99 3.71 1.51
Emitted /absorbed flux ratio 1.67 1.78 1.06 2.52
Tropopause height (mnb) 140 60 100 50
Equatorial jet velocity (m/s) 140 275-400 -200 -400
Number eastward jets over 10% of eq. jet 13 6 2 2

Table 1.1: Properties of the giant planets of the solar system (Irwin (2003), or given
in text).

Saturn has a much more subdued appearance than Jupiter due to being masked
by tropospheric and stratospheric haze associated with ammonia condensation. Yet,
its atmosphere is even more energetic than Jupiter’s. The wind structure is dom-
inated by the wide equatorial jet which unlike the Jupiter case has gone through
some significant variations between the Voyager (1981) and the Cassini (2005) ar-
eas. Voyager measurements (Ingersoll et al., 1984) have found the equatorial jet to
reach 470 m/s, while more recent cloud tracking by Hubble space telescope during the
period 1996-2004 showed a decrease in the intensity of the equatorial jet to 275m/s
(Sanchez-Lavega et al., 2003). Measurements by the Cassini spacecraft in 2004 (Porco
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et al., 2005) have esstimated the equatorial jet to be between 250 m/s to 400 m/s. A
possible reason for the variation over time is the fact that the obliquity on Saturn is
26.7°, and therefore seasonal changes, including the significant variation in insolation
due to the shadow of the rings, may have caused these changes. The high latitude
jets, however, have been persistent over this period with three distinct eastward jets
(center latitudes higher than 45°) in each hemisphere, all with maximum wind speed
over 100m/s (Figure 1.1).

The ice giants Uranus and Neptune are different than Jupiter and Saturn. Their
hydrogen-helium atmosphere is only a small component of their mass which is mostly
composed of a large ice-rock interior. The denser ice-rock interior is estimated to
occur roughly 5000 km below the cloud level (Irwin, 2003). Unlike the gas giants
the ice giants have retrograde winds at the equator. The mean wind profiles of both
planets are smoother than the gas giants with a westward broad jet at low latitudes,
and an eastward jets at high latitudes. The equatorial subrotating jet on Uranus
reaches 200m/s at the equator and spans 25° degrees in latitude in each hemisphere,
and the southern eastward jet peaks at 60S with winds of 200 m /s (Smith et al., 1986)
as well. Because of Uranus’s large obliquity and length of year, we still have not had
a chance to observe its northern hemisphere with modern technology. Neptune has a
stronger and wider subrotating jet reaching a zonal velocity of 400 m/s and two high
latitude jets (250 m/s at 70°)(Conrath et al., 1989). The significant difference in the
equatorial jet between the ice giants and gas giants may indicate a relation between
the interior structure to the zonal winds. In fact in some ways it is easier to see how a
retrograde jet is driven rather than a prograde jet: Hot air rising initially at rest from
the interior has less angular momentum due to being closer to the rotation axis and
therefore will tend to go westward at the surface. Similarly fast rotating equatorial
air at the equator will acquire additional eastward momentum as it moves poleward.
As we discuss in this work, a mechanism for superrotation is more complex.

Vertical wind structure: There has been only one direct measurement of the
vertical structure of any of the planets. The Galileo probe descended into Jupiter’s
atmosphere and returned data until it reached a depth equivalent of 24 bars. The
probe entered inside the equatorial jet at latitude 7.4N where the eastward wind
velocity at 0.4 bars was 90 m/s (Atkinson et al., 1997, 1998) which was similar to
the wind velocities previously inferred from cloud tracking (Limaye, 1986). The wind

increased down to a level of 4 bars reaching 180m/s, and then remained constant for
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as far as the data could be retrieved at the 24 bar level. This result is often used as
evidence that the winds are deep, though one should remember that beyond the point
that this is just a single measurement, the data only accounts for a depth of 150 km
which are no more than 0.22% of the radius of Jupiter. In addition the probe entered
in a “hot-spot” (the equatorial zone is punctuated with 10-13 such 5 um spots (Ortiz
et al., 1998)), which may have anomalous dynamics because of non-zonal motions
that have been associated with them (Vasavada et al., 1998).

Other than this measurement, vertical wind structure has been deduced from the
horizontal temperature gradient using the thermal wind relation. This technique is
very limited due to the observations being only of the higher levels. Based on thermal
wind observations of air temperatures from less than 0.1 bar to ~ 1bar Pirraglia et al.
(1981) suggest that the jets decay with height above the cloud level (Conrath et al.,
1981). Gierasch (1976) suggests that thermal contrasts arising from latent heat release
during the condensation of water at altitudes of 5—10 bars can be large enough so that
through thermal wind balance the jets would not extend a depth of 10 bars (Ingersoll
and Cuzzi, 1969). Others suggest that due to the internal heating the atmosphere
below that cloud level is close to an isentropic state and then the jets extend to the
depth of the planet (Busse, 1976). We discuss these two approaches in greater length
in the next section.

Recently two strong convective outbursts that erupted 9 hours apart and lasted
two months were identified near the peak of the 23N jet (Sanchez-Lavega et al., 2008).
They traveled at a velocity 169 m/s which is stronger than the local jet velocity,
causing significant mixing in their wake. The jet however remained robust against
the turmoil generated by the disturbance evolution. This may suggest that the jet
extends deeper below the upper clouds where the motions were measured.

Vortices: Besides the zonal jets the most prominent feature on Jupiter is the
great red spot (GRS). The GRS is an anticyclone extending 10.5 degrees in latitude
(centered at 23S) with an oval shape and a longitudinal extent of about 17000 km
(Simon-Miller et al., 2002). The maximum velocities of the GRS range from 120m/s
(Dowling and Ingersoll (1988), based on Voyager data) to 150m/s (Simon-Miller
et al. (2002), based on Galileo data). The maximum relative vorticity is 6E — 557!
which is roughly one third of the planetary vorticity at that latitude. The center of
the vortex is found to be about 8 K cooler than the surrounding cloud tops. Thermal

wind balance then implies that the wind speed should decrease with depth and then
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Figure 1.1: The mean zonal velocity [m/s] as function latitude for Jupiter and Saturn
as measured by Voyager. Data is courtesy of A. Sanchez-Lavega, A. Showman and
A. Vasavada.

the GRS would be only 200 km thick. Records of the GRS go back as far as 1665
to observations made by Cassini (Cassini, 1672), indicating this anticyclonic storm
has probably existed for centuries. During the period 1880-2002 the GRS has moved
westward with an average speed of 3m/s and superimposed on this it oscillates 1° in
longitude every 90 days (Trigo-Rodriguez et al., 2000). There are many records (e.g.
Sanchez-Lavega et al., 1998) of interactions of the GRS with other vortices absorbing
part of them and expelling other parts.

Although the GRS is the largest and most sustained vortex on Jupiter, there are
many other vortices with diameter ranges of 1000 — 5000 km (Simon et al., 1998).
Typically the ones at high latitudes are smaller and rounder than the ones at low
latitudes. The transition from round to oval vortices occurs at diameters of ~ 2000 km
indicating that this scale might be where the vortices feel the effect of the planetary

-

vorticity gradient (Vasavada and Showman, 2005). In chapter 7 we use this scale
as the deformation radius in the two layer model. Over 90% of the vortices on
Jupiter are anticyclones. There is a broad literature on this subject and about the
possible preference for anticyclones (Flierl, 1987; Marcus, 1988, 1990; Dowling and

Spiegel, 1990; Yano and Flierl, 1994; Showman, 2004); in this work we do not discuss
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this issue. Interaction of vortices is often observed (Sanchez-Lavega et al., 2001), and

quasigeostrophic models have been successful in describing these interactions (Youssef
and Marcus, 2003).

1.2.2 The Thermal Structure

Temperature: Thermal infrared radiation measurements for all four giant planets
show a nearly uniform meridional thermal flux profile. On Jupiter there are mea-
surements where the poles are even found to be slightly warmer than the equator
(Ingersoll, 1990), and Voyager found the poles of Uranus to be slightly colder than
equator although the poles receive more sunlight (Conrath et al., 1989) due to the
extreme obliquity. Radiation is emitted predominantly from the 0.3-0.5 bar pressure
level and effective temperatures are in average 124K, 93K, 59K and 59K for Jupiter,
Saturn, Uranus and Neptune respectively at that level. Variations from these mean
emission temperatures are mainly associated with the cloud structure and not with
the latitudinal location, although solar heating is latitudinally distributed based on
the season and obliquity.

All four planets have a clear tropopause at 140, 60, 100 and 50 mbar respectively
(beginning with Jupiter), which have temperatures of 110K, 80K, 49K and 50K re-
spectively (Bagenal et al., 2004). Below the tropopause the temperatures increase
generally following a nearly dry adiabatic lapse rate (Lindal et al., 1981; Seiff et al.,
1996). The stratospheric temperature in Saturn’s atmosphere is generally lower than
in Jupiter’s stratosphere as can be expected due to its further distance from the sun;
however, on Neptune the stratospheric temperatures are hotter than on Uranus. Only
Jupiter has good exosphere measurements reaching 1350K, 800 km above the 1 mbar
level (Seiff et al., 1997).

Energy balance: Measurements from both Galileo and Cassini provide estimates
of the radiation at the upper atmospheres. Infrared radiation can not penetrate the
clouds and therefore the measurements reflect the temperature of the upper part of
the atmosphere. All planets (except Uranus) radiate away more energy than they
absorb, implying an internal heat source. The radiation is also distributed more
uniformly than the absorbed sun light, which suggests that there must exists some
mechanism for meridional heat transport (Ingersoll and Porco, 1978). On Jupiter

the emission is mostly radiated in the infrared between 10 and 100 um and has been
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estimated quite accurately. The observed energy is calculated by the incoming energy
from the sun and the albedo. This allows estimating the internal flux from the core
(5.44440.425Wm~2on Jupiter) (Hanel et al., 1981) and calculating the energy balance
defined as the ratio of emitted thermal to absorbed solar energy. On Jupiter this is
1.668 4 0.085, on Saturn 1.78 (Hanel et al., 1983) and on Neptune 2.3 (Pearl and
Conrath, 1991). The exception is Uranus where the internal heat flux is much less
than the solar insulation and this ratio is 1.06 Pearl et al. (1990).

Thermal Waves: Several wave features have been discovered by the thermal
measurements on the giant planets. Flaser and Gierasch (1986), who used Voyager
images of Jupiter, discovered waves traveling within the equatorial superrotating jet
with wavelengths of 300 km. They suggested that these waves may indicate a stably
stratified layer beneath the clouds supporting the propagation of gravity waves. This
hypothesis was later supported by the Galileo entry probe (Seiff et al., 1997) suggest-
ing there is a stably stratified layer between 5 and 16 bars. Similar waves were later
also seen in the Galileo data, (Belton et al., 1996), and Bosak and Ingersoll (2002)
suggested that these waves are produced by Kelvin-Helmholtz instabilities. A much
clearer observation of these waves was recently obtained by the high resolution cam-
eras on the New Horizons spacecraft (Reuter et al., 2007). They find the waves to
persist around the planet and occupy a latitudinal region of 10° around the equator.
These waves have crests which extend further eastward at the equator than in higher
latitudes creating crescent shaped waves propagating eastward at a phase speed of
roughly double the local mean velocity. The phase speed for these waves is estimated
between 204 and 276 m/s (Reuter et al., 2007) while the local mean velocity from
cloud tracking both from New Horizons and HST measurements is 100 m/s .

Larger, planetary scale waves have also been identified on Jupiter. Wavenumber
10 waves were found at equatorial latitudes at depths between 270 mbar and 1 bar by
several authors (Magalhaes et al., 1989; Orton et al., 1994; Harrington et al., 1996;
Deming et al., 1997). The source of the waves is unknown and hypothesis range
from vertical propagation of Rossby waves (Orton et al., 1994) and mixed Rossby-
gravity waves (Deming et al., 1997), to connection with the plumes in the equatorial
“hot-spots” (Ortiz et al., 1998; Showman and Dowling, 2000) or association with
deep convective cells (Magalhaes et al., 1989). The near stationary appearance of
these waves with respect to system III implies possibly a dynamical link between the

interior bulk rotation of the planet (Irwin, 2003). Another interesting feature which
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was observed in stratospheric temperatures on Jupiter was a periodic 4 year variation
in zonal mean temperatures at 20 mbar (Orton et al., 1991). This feature which
has been continuously observed since 1978 takes the form of periodic warming of the
equator and cooling of the 15° — 30° latitude regions in both hemispheres, and then
cooling of the equatorial region and heating of the higher latitudes. There have been
attempts to link this oscillation to the QBO on Earth (Leovy et al., 1991), but the

precise identification of this oscillatory behavior remains elusive.

1.2.3 Clouds

Jupiter’s visual appearance is dominated by dark “belts” and brighter “zones” . Al-
though the general belt/zone structure appears to be very stable, the brightness,
latitudinal extent and presence of discrete features has varied significantly over time
(Vasavada and Showman, 2005). The belt/zone structure is partially associated with
the wind structure, where the peak of the zonal velocities appears to happen on the
boundaries between the belts and zones. The zones are anticyclones, thus in the
northern hemisphere they have an eastward jet on its poleward side and a westward
jet on the equatorward side, and belts are cyclonic. The association between the
belts/zones and wind is less clear at high latitudes. The zones appear more uniform
and steadier in time than the belts, and clouds in them typically extend to higher
altitudes (a few hundred mbar) than in the belts . The origin of the colors and how
they respond to the winds is uncertain.

Chemical structure and Clouds: In all the outer planets the atmospheres are
composed mostly of molecular hydrogen and helium, with some heavier compounds
which vary between the four planets. The abundance of "heavy’ elements in the whole
planet is estimated to be 3 times the solar for Jupiter, 5 times the solar for Saturn and
increasing to 20— 30 times solar for Uranus and Neptune. The atmospheres themselves
contain only a fraction of this, and the most abundant elements after hydrogen ( H,)
and helium (He) are, in decreasing order, water (H,0), methane (CH,), ammonia
(NHj), and hydrogen sulphide (H2S) (Irwin, 2003). The upper atmospheres are
cold enough so that some of these elements condense at various levels forming the
observable cloud decks. On Jupiter the visible clouds are usually ammonia colored
by sulfur, phosphorus and carbon compounds, and their top pressures are thought to

be in the range of 0.3 to 3 bars while their base at 5 to 15 bars.
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1.3 Previous Dynamical Models

Two general approaches have been taken to explain the strong zonal jets on the
Jovian atmospheres. The two emerged almost at the same time in the mid 1970’s
after the first detailed observations were obtained by the first space missions. Busse
(1976), inspired by the Taylor-Proudman effect, suggested that if the flow is deep and
extends all the way through the planet, then the jets may be the surface manifestation
of differentially rotating cylinders concentric with the planet’s rotating axis. On
the other hand, geostrophic turbulence theory (Rhines, 1975, 1979), assuming the
dynamics are confined to an outer “weather layer”, suggests that the zonal jets emerge
from decaying or stochastically forced turbulence on a 3 plane. These two approaches

have been in debate ever since.

1.3.1 Shallow Models

The first to apply the “shallow” approach to Jupiter was Williams (1978, 1979) who
used both barotropic and baroclinic models to show that an imposed turbulent eddy
field can lead to an inverse energy cascade leading to jets on the order of the Rhines
scale. Other authors have studied zonal jets appearing from geostrophic turbulence
(Vallis and Maltrud, 1993; Cho and Polvani, 1996; Huang and Robinson, 1998; Man-
ifori and Young, 1999; Huang et al., 2001; Smith, 2003; Lee, 2004). Panetta (1993)
showed that jets can emerge from baroclinic instability in a two layer model which has
an imposed thermal gradient. This model allows transfer of energy from the upper to
the lower layer and results in an equivalent barotropic jet. These jets seem persistent
and stable, however they appear primarily when averaged, while the instantaneous
fields are dominated by the eddies. Williams (2003) has produced jets in a baroclinic
primitive equation system on a sphere and shows that, depending on details of the
stratification and shear, the jets can migrate equatorward. Cho and Polvani (1996)
impose an eddy field in a shallow water layer on a sphere and show that the eddy field
evolves to a set of zonal jets at the lower latitudes, with an equatorial westward jet.
Using a barotropic vorticity model with small scale random forcing and large scale
friction Huang et al. (2001) and Galperin et al. (2001) suggest a scaling law to the
energy spectra of the jets and show (Galperin et al., 2001, 2006) that it matches the
spectrum of the observed jets on Jupiter. Smith (2003) shows multiple jets emerging

from stochastically forced QG turbulence in an equivalent barotropic system. Show-
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man (2007) show that shallow water simulations forced by mass pulses representing
episodic thunderstorms in the Jovian atmosphere (Ingersoll and Cuong, 1981) can
form equatorial jets (subrotating) and anticyclonic vortices at higher latitudes.

As applied to a gas giant’s atmosphere, these shallow water or quasi-geostrophic
models have several flaws exemplified by comparison to Jupiter: first, the observed
winds violate the barotropic stability condition (Ingersoll and Cuong, 1981), thus
B — uyy < 0 at some latitudes, although the zonal winds appear to be very stable.
In contrast, all of the models produce curvatures wu,, which are smaller than j, so
that the predicted jets are weaker or wider than the Jovian ones. Second, none
of these models can reproduce a superrotating jet at the equator. Some shallow
water models (Cho and Polvani, 1996; Cho and Polvani, 1996; lacono et al., 1999a,b)
produce a westward retrograde jet, and typically the jets that are produced are not
much stronger than the eddy field. Third, these shallow models assume a boundary
at a depth of about one scale height, with the fluid below being motionless. But
the thermal wind shear observed on Jupiter (Conrath et al., 1981; Gierasch et al.,
1986) suggests that the flows will extend deeper and may increase, rather than die out,
with depth. The Galileo probe showed this kind of velocity structure (Atkinson et al.,
1996), implying two separate regimes; an upper radiative regime (above 4 bars) and
an inner deep adiabatic regime below. Fourth, these models either require random
forcing or deal with decay of strong initial perturbations, leaving it unclear how such
a state can be maintained. The exceptions, Panetta’s (1993) and Williams’ (2003)
baroclinic instability models, require large-scale baroclinicity strong enough to satisfy
the Charney-Stern theorem, so that turbulence can be generated and maintained by
feeding on the available potential energy. But the observed global scale temperature
differences (Ingersoll, 1976; Hanel et al., 1981, 1983) seem to be much smaller. Finally,
for Jupiter, Saturn and Neptune the internal heat flux is estimated to be as strong
as the absorbed heat flux from the sun (Hanel et al., 1981, 1983; Pearl and Conrath,
1991); the shallow models do not attempt to account for the heat balance.

In Kaspi and Flierl (2007) (also chapter 7 of this thesis) we show that baroclinic
instability in a two layer quasigeostrophic model with the bottom layer having a
different planetary vorticity gradient representing the deep convective columns (see
next section), can form multiple zonal jets that appear in the instantaneous fields
(thus stronger than the eddies), and violate the barotropic stability condition but still

are stable and consistent in time. Unlike the previous baroclinic models (Panetta,

29



1993; Williams, 2003) due to the different geometry this model does not require a
high level of baroclinicity, to generate turbulence which then cascades to zonal jets.

Another approach using a shallow model was to try and deduce the deep circula-
tion by observing the potential vorticity in the overlying flow. Dowling and Ingersoll
(1988, 1989) have derived a family of possible equivalent height fields by assuming
conservation of potential vorticity in a barotropic shallow layer. This allows deducing
the deep flow from the data (up to a parameter), without making apriori assumptions
about the deep layer. One problem with this approach is that the only place where
there is enough variation in vorticity is near big vortices such as around the giant red
spot and white oval. Dowling (1993) shows that this family of equivalent height fields,
corresponds to a case where the deformation radius is on the order of the Rhines scale,
and then the flow is stable. Further, by later observations from the impact of comet
Shoemaker-Levy on Jupiter (Hammel et al., 1995), a specific member of this family
can be singled out (Dowling, 1995), and a prediction can be made about the strength
of the deep flow which is comparable to the value obtained from the Galileo entry
probe (Atkinson et al., 1996).

Ioannou and Lindzen (1993a,b, 1994) put forward a totally different approach
to explain the zonal jets (Lindzen, 1991). They suggest that if the interior is even
marginally statically stable, then tides from a dominant moon may provide the mo-
mentum source maintaining the jets. They show that the response to the tides results
in high order Hough modes, which have meridional alternations resembling the alter-
nations in the jets.

For Earth’s atmosphere shallow water and quasi geostrophic models have had
tremendous success in describing some of the fundamental dynamics. Due to the
differences in the Jovian atmosphere pointed above it is not clear if this would be
the case for the giant planets. Yet, the striking similarity of some of the phenomena
observed on the Jovian atmosphere to the terrestrial atmosphere, and to features
obtained in these models would lead to think that at least part of the dynamical
understanding is captured by the shallow models. Showman et al. (2006) point out
that the source of the forcing (whether deep or shallow) may be decoupled from
whether the zonal winds are deep or shallow. Therefore even if the winds are deep
they might have shallow sources and visa versa. Next we turn to discus the second

approach — the deep models.

30



1.3.2 Deep Models

The “deep” approach assumes that the jet’s generation comes from within the interior
of the planet. The assumption is based on the fact that since the planet is heated from
within, convection drives it close to an adiabatic state, with nearly zero stratification,
leading to Taylor columns that penetrate throughout the planet, and therefore there
is no confinement to a thin spherical shell. Inspired by laboratory experiments (Busse,
1970), where a homogeneous rapidly rotating sphere was heated from the inside and
such a multi-column structure was formed, Busse (1976, 1994) suggested that the
interior of a planet may be occupied by Taylor columns that surround a hot core.
He suggested that the multi-layered structure of convection rolls might produce the
zonal jets through nonlinear interactions among the columns.

The problem of onset of convection in a rotating sphere was first studied in terms
of axisymmetric solutions (e.g. Chandrasekhar, 1952), but as noted first by Veronis
(1959) convection tends to form non-axisymmetric cells. Chandrasekhar (1961) set
the standard formulation for the rotation dominated problem which was adopted in
following work discussed here. Roberts (1968) showed that for large enough Taylor
numbers (rapid rotation) the asymmetric modes will be the fastest growing unsta-
ble modes. These modes also appeared in laboratory experiments (Busse, 1970) and
were the basis for Busse’s model for Taylor columns in the interior of the giant plan-
ets (Busse, 1976). In both cases the asymmetric modes where confined to a thin
chain of convection columns at a distance of about half the radius from the axis of
rotation. Later studies (Zhang and Busse, 1987) showed that the radial structures
of these modes are sensitive to the Prandtl number with a sharp transition between
two distinct modes. In the first mode, where Prandtl numbers are higher, convection
columns are at about half the distance to the axis of rotation as suggested by the
asymptotic theory (Roberts, 1968). However, as the Prandt]l number is decreased, the
columns begin to stretch and develop a spiraling shape (Zhang, 1992). Decreasing
the Prandtl number beyond a critical point leads to a new state with circular modes
attached to the outer wall. Zhang (1994) showed that these modes can be under-
stood as inertial oscillations which are slightly modified by the effects of viscosity
and buoyancy. These calculations matched asymptotic theories discussing the radial
dependence of the unstable modes for the linear problem of the onset of convection,
and was studied both in equivalent cylindrical systems (Yano, 1992) and for a full
sphere (Jones et al., 2000).
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Ingersoll and Pollard (1982) noted that a columnar structure as described by
Busse in a sphere is analogous to 8 plane dynamics only with a different definition
of 5. Consequently arguments from Rhines (1975) may still apply and deep two-
dimensional turbulence may create jets. An advantage of this theory is that the
Ingersoll and Pollard (1982) equivalent barotropic stability criterion, which has an
effective 5 which is negative and three times the value from the standard planetary
3, is more consistent with the Jupiter data. On Jupiter the observed winds are close
to marginal stability according to this criterion. Yano and Flierl (1994) have used this
idea of a negative bottom layer 8 to demonstrate its effect on an isolated vortex like
Jupiter’s giant red spot in a zonal jet. We use this parametrization for the bottom
layer in the two layer model in chapter 7.

The spiraling modes obtained by Zhang (1992) have a structure that adjacent
convection cells have opposite circulations. This character for weak linear convection
appears in other studies as well (e.g. Zhang and Schubert, 1997; Christensen, 2002).
Following the negative /3 plane idea of Ingersoll and Pollard (1982), such a structure
when perturbed, develops local relative vorticity based on the interaction of the col-
umn with an exterior boundary, as the columns conserve their total circulation when
stretched or squeezed (Busse, 1994). Such an interaction can cause propagation of the
vortices similar to a propagation of a Rossby wave (Busse, 1986). Busse and Hood
(1982) showed that linear modes will tend to tilt based on the direction of the outer
boundary slope, and eastward or westward shear will form. This shear however was
no stronger than the perturbation itself. The spiraling alternating linear modes ob-
tained by Zhang (1992) have positive Reynolds stresses which can create a mean flow.
Zhang and Schubert (1996, 1997) have showed that even for a thermally driven con-
vective interior bounded by a corotating convectively stable stratified layer, the fluid
motions resulting from the instability develop similar linear modes that concentrate
primarily in the outer stable region.

All the models discussed above were limited to either linear or weakly nonlin-
ear regimes. It is not obvious that any of these modes, and therefore the resulting
mechanisms can be maintained in the nonlinear regime. Glatzmaier and Olson (1993)
showed numerically Taylor columns can still be maintained when the Rayleigh num-
ber is 50 times critical but their experiment was limited to a slowly rotating regime.
A second shortcoming of the models discussed above, is that they were all limited

to the Boussinesq approximation. The only compressible attempt to model such
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flows (Gilman and Glatzmaier, 1981) was in the solar context (slow rotation) using
the anelastic approximation for an ideal gas (Ogura and Phillips, 1962), where they
showed that non-axisymmetric convection modes still exist in the compressible fluid
for the parameter region of their examination.

With the advance of computational abilities numerical 3D models (Sun et al., 1993;
Aurnou and Olson, 2001; Christensen, 2002) solving the full Navier-Stokes equations
subject to the Boussinesq approximation have demonstrated that in a rapidly rotating
system a broad eastward flow can develop at the equator. This flow has been referred
to result from the so-called Busse columns, though none of these studies actually
demonstrated such columns explicitly. Christensen (2002) shows formation of spiral-
ing convection cells in a 3D numerical model for case of quasi-stationary convection
and shows that for higher Rayleigh numbers the convection becomes chaotic with a
superrotating equatorial flow and higher latitude subrotating flow. The subrotating
flow had near equal velocity along the direction of the axis of rotation. A major
difference between these flows and the one suggested by Busse (1976) is that they
did not develop multiple nested cylinders that would interact and produce multiple
zonal jets. Multiple band structures which result from columnar convection have
been shown in laboratory experiments by Manneville and Olson (1996) though these
bands occupy region only within 45° from the equator. Heimpel et al. (2005) using
a Boussinesq model covering one tenth the depth of the planet and a longitudinal
section of 45°, have produced high latitude jets driven by internal convection which
appear when time averaged. These jets though seem to depend on the bottom flux
fed by the Rayleigh-Benard type convection, and the width of the equatorial flow
depends on the location of the bottom boundary.

The biggest objection to the deep theories is that we do not observe any definite
columnar features at the top levels and the similarity between north and south hemi-
sphere, although partially apparent, is not exact. This though can be resolved by the
fact that at the cloud levels other processes including 2D turbulence can play a role
breaking the symmetry at that level. Another criticism of the deep models is that
they do not take into account the existence of a magnetic field (Kirk and Steven-
son, 1987). This is based on the notion that the transition between molecular and
metallic hydrogen acts as an interface and inhibits the convection from acting across
that interface (Stevenson and Salpeter, 1976). The depth of that transition remains

poorly known but probably lies between 0.7 — 0.9 Jupiter radii and at pressures of
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1 — 3 Mbar (Guillot et al., 2004). Lorentz forces in the metallic region can act to
break the zonal flows there. Recently, Liu (2006) suggested that if the zonal flows
were completely barotropic and magnetic field in the interior can be inferred from
their exterior values, then ohmic dissipation will cause breakdown of the deep zonal
flow even above the level of the phase transition. Laboratory work indicates that
the transition from molecular to metallic hydrogen may not be sharp in density and
conductivity (Weir et al., 1996).

The two major drawbacks of these models are the use of the Boussinesq approxi-
mation and having the physical understanding of the dynamics limited to the linear

models. In this work we attempt to address these two issues.

1.3.3 Discussion: Shallow vs. Deep Approaches

Both approaches have compelling arguments to why they are important to the dy-
namics. On one hand due to the strong convection it is hard to escape having a
nearly barotropic interior and then the Taylor-Proudman theorem will hold in the
interior. On the other hand the resemblance to terrestrial weather and the fact that
infrared observations show that the atmosphere is not barotropic near the cloud level,
supports the approach that there is a stability stratified baroclinic level beneath the
clouds and the dynamics may be governed by shallow processes only. Bridging the
two approaches, a scenario that the atmosphere is indeed barotropic beyond some
level but the velocities have become weak by that depth would be therefore be a
plausible case. However, the Galileo probe which showed that indeed the atmosphere
is baroclinic but in the “wrong” way; therefore increasing velocities down to a certain
depth where they become constant would seem to lead back to the importance of
deep processes.

An important difference worth noting between the shallow and deep approaches,
is that the shallow models assume that only full 2D turbulence can explain the jets,
while deep models suggest that stepping up from linear to weakly nonlinear theory
leads to closer understanding of reality. Obviously linear dynamics could not describe
the mechanisms leading to formation of jets in 2D turbulence; however as we show in
chapter 7 weakly nonlinear baroclinic instability can give insight to the formation of
quasigeostrophic jets. On the other end we show the transition from weakly nonlinear

to fully turbulent dynamics in our deep model.
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An appealing possibility is that the actual jet structure lies somewhere between
the two, shallow verses deep, scenarios. Ingersoll and Cuong (1981) argue that the
zonal flow is deep rooted while the coherent vortices like the GRS are confined to
the shallow part of the atmosphere. However, Yano and Flierl (1994) point out that
a baroclinic GRS produces a barotropic radiating field and thus the GRS could not
be sustained. Vasavada and Showman (2005) point out that such a deep rooted
superrotation underlying a shallow atmosphere can explain the near, but imperfect,
symmetry between northern and southern hemispheres. In this respect as pointed by
Yano (1994) the coupling of deep thermal convection with the atmospheric circulation

is the next step for modeling.

1.4 Fundamental Questions

The previous two sections have pointed to the key observational data and modeling
approaches in our attempt to understand the dynamics on the giant planets. Above
all they indicate the discrepancy between the amount of data that we know and
the level of understanding we have about the dynamics. Questions such as, what
drives the zonal jets? what controls the speed and width of the zonal jets? Why
are the equatorial jets on the gas giant superrotating” Why is there an opposite
equatorial rotation on the ice giants? How deep are the zonal jets?” What controls
the jets stability? What drives the wave features observed within the equatorial
superrotation? and what causes the uniform emitted thermal flux, are all first order
questions that must be answered to understand these dynamics. Our goal is to try

and address all these questions, and we come back to discuss them in chapter 8.

1.5 Methodology

The previous sections highlighted the need for a model which is both non-Boussinesq
and capable of studying convective turbulence in the full 3D system. Our main tool in
this thesis is such a model that we built based on the non-hydrostatic dynamical core
of the MITgem. We focus on the understanding of specific physical processes using
simplified configurations of this model, a variety of other simpler numerical models
and analytic models. Our new general circulation model is an improvement over

previous models in several aspects: It is both non-hydrostatic and non-Boussinesq
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and thus can address convection in a compressible system (anelastic). The model is
deep, and therefore can address a full sphere of gas (beside a small interior core), with
a constant number of vertical levels per scale height, thus keeping a high resolution in
the atmosphere. It uses an equation of state suited for hydrogen-helium mixtures and
therefore beyond accounting for the compressibility it has the capability of including
the complex thermodynamics in the deep interior of the planet. Finally, it uses a
forcing scheme that represents the cooling of the whole vertical structure, different
from Rayleigh-Benard type convection set by the boundaries, and has a radially
dependent gravity field and thermodynamic variables.

We progressively build a physical understanding of the dynamics beginning from
the simpler 2D slowly rotating and Boussinesq cases and move to the 3D rapidly
rotating and anelastic cases. We perform studies for understanding the roles of pro-
cesses such as rotation and stratification. For the full 3D anelastic model we extend
these process studies to explore the parameter space of Rayleigh, Ekman and Prantd]l
numbers and other model settings such as the total aspect ratio and forcing. We then
focus on the mechanisms driving the cyclonic convection columns, baroclinic shear
and equatorial superrotation. We show that the mechanisms suggested in previous
work of deep convection models mostly in the linear and weakly nonlinear regimes
can be identified in the GCM for the weakly turbulent cases. The transition to
stronger turbulent regimes possesses some of the same mechanisms but also has some
differences.

Since Jupiter is the giant planet that we have the most data about both in terms
of meteorology and internal thermodynamics, we set our model parameters to the
Jupiter regime. Many of the physical processes that we find however would be appli-
cable to Saturn as well. There is a high level of uncertainty regarding dynamics in
the plasma interior of the planet. Most previous models set the bottom limit above
or at the level of the molecular-metallic boundary. Although this might not be the
best representation of Jupiter itself, we deliberately push the bottom limit well below
this level in effort to study the dynamics when the vertical and horizontal scales are
comparable. In fact, as we show, when using a thinner (and maybe more realistic)
spherical shell some of the dynamical features, such as the width of the superrotating
jet, resemble more the observations of Jupiter. In order however not to be biased by
this, and for the generality of the study most of the analysis is done with an aspect

ratio factor of two between outer and inner shell boundary. We do however show the
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whole range from a thin spherical shell to a full sphere.

A completely different model is used in chapter 7 to study the formation of multi-
ple zonal jets. This is a quasigeostrophic two layer model, which has a representation
of the deep dynamics which are demonstrated by the full GCM (although this study
proceeded the development of the GCM). Here again we use a hierarchy of models
ranging from linear stability analysis, through a weakly nonlinear theory and a non-
linear model truncated to one growing mode, to a fully nonlinear model. We show
that multiple zonal jets can form from baroclinic instability and an inverse energy

cascade in geostrophic turbulence.

1.6 Thesis Overview

We begin in chapter 2 by a description of the new general circulation model. Be-
yond the issues of adapting the MITgem dynamical core to the deep anelastic system,
in this chapter we discuss in detail the anelastic approximation itself and present
a generalization to previous work showing that the anelastic approximation can be
applied, and is energetically consistent, with a general equation of state. Chapter 3
discusses results from the numerical model, beginning from results from 2D axisym-
metric calculations through results from the 3D anelastic calculations. Within the 2D
framework we present only results that are robust and hold for the 3D case (such as
the effect of rotation), or results which are different (such as equatorial zonal flows)
but highlight the role of the asymmetries in driving the 3D dynamics. Another re-
sult obtained from the axisymmetric model is the dependence of the critical Rayleigh
number on latitude. We solve for the 2D Boussinesq case using a local approximation
analytically, and then demonstrate numerically. The latter part of this chapter is
devoted to presenting results from the 3D anelastic model which will be a framework
for future discussion and interpretation.

In chapter 4 we discuss the baroclinic structure of the zonal velocity. The main
paradigm here is that the Taylor Proudman theorem should apply for the zonal veloc-
ity whether the fluid is anelastic or Boussinesq as long as the fluid is in a barotropic
state. We show that baroclinic contributions due to convection are in fact important
in driving the velocity away from the Taylor-Proudman regime, and the baroclinic
contributions due to compressibility create a shear in the zonal velocity while keeping

the alignment with the axis of rotation. We show that although the absolute value
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of the velocities depends on the model parameters the vertical structure of the zonal
flow does not. We look at the zonally averaged momentum budget, and show that
eddy momentum fluxes acting away from the axis of rotation drive momentum to
the exterior to generate the superrotating equatorial winds. These eddy momentum
fluxes are strongest along a cylindrical surface within the sphere. We show that this
cylindrical surface is caused by smaller scale convection cells, parallel to the axis
of rotation, which surround the interior core and penetrate throughout the planet.
Different from the convection columns suggested by Busse (1976), these cells are all
cyclonic.

In chapter 5 we use three different models to focus on the mechanisms driving
the cyclonic columns and equatorial superrotation. We look at the GCM in a regime
of weak convection where we can better identify the physics driving the circulation
we see in the more turbulent cases. This parameter regime of the GCM allows us
to clearly identify the positive (eastward) phase speed of the convection columns. It
shows the transition from an initial weak-velocity state with alternating cyclonic and
anticyclonic modes, which are similar to modes seen in linear and weakly nonlinear
studies such as Zhang (1992); Zhang and Schubert (1997), to a state with only cy-
clonically rotating columns. The correlation within the columns between the zonal
and vertical velocity anomalies drives the upgradient angular momentum fluxes. This
weakly nonlinear mode of the model also allows us to follow in a more precise way (due
to the less noisy solution) the momentum budget. We follow Ingersoll and Pollard
(1982) and show that their barotropic cylindrical model represents well some aspects
of the turbulent interior and can explain the direction of propagation (through an
equivalent Rossby wave mechanism) and roughly account for the number of convec-
tion columns. Finally, we focus on the mechanism for the angular momentum flux by
using a simplified barotropic annulus model which allows studying the zonal tilt in the
eigenmodes, which are analogous to a slice through the spiraling convection columns
seen in the full GCM, and point to the role of the planetary vorticity gradient and
viscosity in creating these modes.

In chapter 6 we explore the parameter space of the model. Due to the relative
simplicity of the model the parameter space is rather limited and allows doing a
sensitivity analysis to most parameters. We divide the parameters into two groups:
one of parameters which are associated with the specific configuration of the model

such as the location of the boundaries and model resolution; and the second are
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parameters controlling the coupled six equations we solve which are the Rayleigh,
Ekman, Prandtl numbers, the choice of the forcing profile and the details of the
equation of state. We begin by varying the depth of the domain from a thin shell
(10% of the planet’s radius) to almost a full sphere (93% of the radius) and look
at the implications in terms of the location of the columns and details of the zonal
flow. Then we do a systematic study varying the nondimensional numbers controlling
the simulations, look at specific solutions which appear during spin-up and study the
dependence on different forcing profiles. Since this is a new model this study is
essential for any interpretation of our results.

Chapter 7 stands on its own as an independent study, but uses some of the con-
cepts developed in the previous chapters as motivation for the model setup. The main
concept we take from the deep model (and was suggested originally by Ingersoll and
Pollard, 1982) is a negative 3 plane which comes from the opposite direction of the
background planetary vorticity gradient in the interior of a fluid sphere demonstrated
in chapter 5. We propose that baroclinic instability of a weak shear may play an im-
portant role in the generation and stability of the strong multiple zonal jets observed
in the atmospheres of the giant planets. We use a two-layer quasigeostrophic model
on a 3 plane where the bottom layer has a negative 3. Linear stability theory predicts
that the high wave number perturbations will be the dominant unstable modes for a
small vertical wind shear like that inferred from observations. We develop a nonlin-
ear model truncated to one growing mode which generates a multiple jet meridional
structure, driven by the nonlinear interaction between the eddies. In the weakly
supercritical limit, this model agrees with previous weakly nonlinear theory, but it
can be explored beyond this limit allowing the multiple jet induced zonal flow to
be stronger than the eddy field. Calculations with a fully nonlinear pseudo-spectral
model produce stable meridional multi-jet structures when beginning from a random
potential vorticity perturbation field. The instability removes energy from the mean
state weak baroclinic shear and generates turbulent eddies that undergo an inverse
energy cascade and form multi-jet zonal winds. The jets are the dominant feature
in the instantaneous upper layer flow, with the eddies being relatively weak. The
jets scale with the Rhines’ length, but are strong enough to violate the barotropic
stability criterion. We show that the basic physical mechanism for the generation and
stability of the jets in the fully nonlinear two layer numerical model is similar to that

of the truncated model.
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The model discussed in chapter 7 points out the possible importance of the in-
teraction between the convectively driven interior and the shallow stably stratified
atmosphere. In chapter 8 we discuss preliminary results of such coupling using the
anelastic GCM when driven by both convection and solar forcing. We show a possible
application for our anelastic model for the upcoming JUNO mission to Jupiter (2011)
which will measure the high order gravity moments. We follow on a suggestion by
Hubbard (1999) that precise measurements of the high order gravitational moments
can give information on the deep wind structure of the planet. We calculate the
gravitational moments resulting from the density field for different end-state velocity
profiles. In chapter 8 we conclude and summarize our results both from the pure
fluid mechanical aspect of the problem, and the application to the dynamics and

circulation on the giant planets.
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Chapter 2

A Deep Anelastic General Circulation
Model

2.1 Model Overview

We are interested in studying the dynamics of system where the fluid is not confined
to a spherical shell, is driven by internal convection and the density varies over several
orders of magnitude. Previous attempts to model this system fall into two general
categories: convection models with deep geometry that are limited to Boussinesq
dynamics (e.g. Zhang and Schubert, 1997; Aurnou and Olson, 2001; Christensen,
2002; Heimpel et al., 2005), or spherical shell atmospheric type models which lack or
parametrize the interior convection (e.g. Cho and Polvani, 1996; Lee, 2004; Lian et al.,
2006). The idea of forming such a model is two fold: one reason is to address in a new
way some of the questions presented in chapter 1 regarding the dynamics on the giant
planets. The second reason is to look at new aspects of fluid dynamics of a rotating
sphere in which the gravity and rotation vectors are not parallel. Such analysis has
never been attempted in a system which is non-Boussinesq, non-hydrostatic and has
a realistic equation of state which is dependent on the pressure variations. As we will
show in the next chapter this model also allows us to reach more turbulent regimes
than achieved in previous work.

A main complexity of this problem is that the system varies in more than four
orders of magnitude in density (from about a tenth the density of air at 1 bar to

a few times the density of water at 10 Mbar), and therefore requires accounting for
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the compressibility of the gas. Typically this problem is overcome by using pressure
coordinates which allows us to use equivalent Boussinesq dynamics, with redefining
the vertical velocity, and still to account for the compressibility of the gas (Vallis,
2006). However since this is a convective system and we need to conserve all non-
hydrostatic components in the momentum equations, the use of pressure coordinates
brings additional difficulties. Therefore we have constructed the model in regular
depth coordinates, but use the anelastic approximation to account for the variations
in density. This approximation allows for the variations in mean density but neglects
the density anomalies in the mass equation. Although a natural starting point for
this model would seem to be an atmospheric model, the flexibility, the available non-
hydrostatic core, the reliability, and the available support at MIT led us to choose to
use the MITgcm.

2.2 The Anelastic System

The anelastic approximation was first introduced by Batchelor (1953) for a adiabat-
ically stratified horizontally uniform reference state. Then it was more rigorously
presented by Ogura and Phillips (1962) in order to filter sound waves in a non-
hydrostatic system. In essence, they perform a linearization around a specified adi-
abatic state 3 = sy which defines a reference pressure p(r) and density p(r). The
mass equation loses the %§ term (thereby eliminating the fast sound waves); Ogura
and Phillips showed that with suitable changes in other equations and using an ideal
gas, the anelastic system conserves energy. Durran (1989) showed a more general
solution which he called the pseudo-incompressible approximation, where he relaxes
the assumption that entropy anomalies are small compared to the reference adiabatic
state. In the pseudo-incompressible system density fluctuations which arise through
fluctuations in pressure are neglected, and density fluctuations from temperature are
figured into the mass balance. Durran’s solution may be better applicable for systems
with large horizontal temperature variations, however in a convective system with a
large range of densities and pressures, one can not assume density fluctuations due
to pressure are small, while due to the convection the reference state may be close
to adiabatic. Both Ogura and Phillips and Durran assume the fluid is an ideal gas,
while for the interior of the giant planets the gas diverges significantly from an ideal

gas (section 2.3). We have extended the derivation for a general equation of state,
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and demonstrated that as long as the mean state is close to adiabatic the system will

conserve energy; this is shown in section 2.2.3. Taking the density and pressure to be

12
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where the gravitational acceleration ¢(r) is also a function of depth and is defined by

r

Go(r'
9(r) = / [r),(;)dr’. (2.4)

0

where G is the Cavendish constant. The density and pressure anomalies vary both
spatially and temporally. With the anelastic approximation the continuity equation
therefore takes the form

V-(pu) = 0, (2.5)

where u is the 3D velocity vector. Throughout the thesis we will try and keep the
equations concise using vector form, but in this section, for completeness, we will
write the model equations in the full form. Given the spherical nature of the problem
we will use spherical coordinates, where ¢ is the longitude, € is the latitude and r is
the radial coordinate. Therefore the velocity vector is defined in spherical coordinates

as

(2.6)

D¢ TDO &
Dt Dt" Db )

(u,v,w) = (r cos —

With 7 defined by (2.1) and with the divergence operator in spherical coordinates,

the mass equation (2.5) takes the form
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2.2.1 The Anelastic Momentum Equations

The momentum equations for a rotating fluid when applying the anelastic approxi-

mation, thus assuming p' (¢, 6,r,t) < p(r), in spherical coordinates become

%4-%— %tan9—2Qsin9v+2Qcosﬁw = _ﬁrc,los()g_];+UV2u (2.8)
%Itj+%+u??tan9+293in0u = —%%—]gﬁLl/V?v (2.9)
%l; - s _: i —2Qcosbu = —%% - % + vV2w (2.10)

where % is the material derivative,
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= = i T O D 2.1
6 = B rosied r@ Car (2:31)

2 = Q(r,0) is the planet’s rotation, v is a constant viscosity, and the Laplacian

operator is given by

: _ 1 0 1 0 9y, 10 /(,0
@ = r2005298¢2+r2c05089 COSB@B +r28r T (32)

We have made an approximation neglecting some of the terms when going from a
Laplacian of a vector to that of a scalar (Morse and Feshbach, 1953) in the viscosity
term. Similar to the Boussinesq approximation, the large hydrostatic mean terms
(2.3) can be removed from the vertical momentum equation so that the terms in
the momentum equations tend to be of the same order. Typically in oceanic and
atmospheric applications (Pedlosky, 1987), since the motion is confined to a thin
spherical shell, some of the metric terms in (2.8 - 2.10) can be neglected. However,
when studying the dynamics of a full sphere, where r varies considerably, these terms
are important. The Coriolis term associated with the vertical velocity and the Coriolis
term in the vertical equation are typically neglected as well. The first is neglected due
to the small aspect ratio between vertical lengths and horizontal lengths leading to
the vertical velocity scaling smaller than the horizontal velocity. Similarly, due to the
small aspect ratio the vertical momentum equation to the first order is hydrostatic
(beyond the hydrostatic basic state) and the Coriolis term typically may be neglected.

We emphasize that we do not make any of these approximations, and the importance
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of these typically neglected terms is discussed further in chapter 4. In the deep
sphere much of the intuition such as the vertical balance being close to hydrostatic,
or the similar scaling of zonal and meridional motions does not hold. In fact, as
we will show, in this problem there is a closer connection between the vertical and

meridional velocities, than between horizontal ones.

2.2.1.1 The Anelastic Equations for an Ideal Gas

A main difference between the anelastic system and the Boussinesq one is that, since
the background density is not taken as a constant, a more natural variable for the
buoyancy is the entropy. We begin by discussing this for an ideal gas, following Ogura
and Phillips (1962), and then show the buoyancy expression for a general equation
of state. For an ideal gas we can express the entropy as a function of pressure and

density s = s (p, p) so that
s=Cplogf = C,logT — Rlogp=_C,logp— C,logp {2.13)

where (', and C, are the specific heat at constant pressure and volume for an ideal
gas, and R is the ideal gas constant. Considering a variation s’ from the mean state
5 we can express the buoyancy term in (2.10) in terms of density and pressure using
(2.13) so that

. ST, i (2.14)

; . O " > 6
where v is the ratio Z. Similarly we can do the same for the mean density gradient

so that

14p . dlap 1lws  gp 1us (2.15)
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where the approximation has been to the same level as the approximation done for the

momentum equations in (2.8 - 2.10). Then the vertical momentum equation (2.10)
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using (2.14, 2.15) can be written as

Dw o (p plgp 1ds 1p" ¢
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so that the buoyancy term in the vertical momentum equation is expressed in terms
of the entropy only. For a basic state which is adiabatic, this system is analogous
to the Boussinesq system, with the pressure term including the variation in mean

density, and entropy instead of density in the expression for buoyancy.

2.2.1.2 The Anelastic Equations for a General Equation of State

We would like to extend this to a general equation of state. Since our system diverges
from an ideal gas in the interior (section 2.3), this will allow us to apply the anelastic
equations to the deep interior of the planet. We assume a general equation of state,

and define entropy in the general form s = s (p, p). We use the following definitions

0s 0s
Cp_T<5T>p , C,,_T<6—T>V, (2.18)
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e |22 ) . BeofE] 9.19
“ p(aT ? p\Op/ (2.19)

for the specific heats (at constant pressure and volume), the isobaric expansion co-
efficient and the isothermal compressibility per unit mass. This allows us to express

the small entropy variation from a mean state as

B ds ’ s Pl @/ Cp /
° (ap)p”+<6p>p”‘ Ta® ~ Tap'" Get.

Applying the same for the mean state entropy and keeping this derivation general,

thus allowing the mean entropy to vary radially, gives

dp _ oTpds  Cudp'y

— = 2.21
dr C, dr Cy ( )
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Then the vertical momentum equation can be written as

Dw 0 (P P [oTpds Cp’9q] g oTp, C,op,
Di + 2Qcosfu = 5 (ﬁ) 5 [C,, = + C, 5 c, G, p
- o (v oT ds , goT ,
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Therefore, the buoyancy is expressed by two terms. One involves the mean state
entropy gradient and the pressure variations, and a second term has only the entropy
perturbations. This shows that a natural reference system, analogous to one of a con-
stant background density in the Boussinesq system, would be an adiabatic reference
state so that % = 0. In that case

Duw 0 qgaT

D + 2Qcosu = ~ o (D) + G,

g, (2.23)

where & = %, is the anelastic potential. In the case of an ideal gas (2.22) reduces to

(2.17). We can gain more intuition for the buoyancy term by noting that

= oT oTr 7 aTyg
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where we have used the basic hydrostatic state (2.3), and the Maxwell identity

oT B 1 (dp
(0—1)) -T2 <$)p~ (2.25)

Then for the adiabatic case we can write (2.22) as

Dw 0 s
D + 2Qcosfu = % (®) — s'VT. (2.26)

r

Thus under the anelastic approximation, with an adiabatic background state, the
buoyancy term is given directly by the entropy variation and the background tem-
perature gradient. This result is the anelastic system used by Ingersoll and Pollard
(1982) who have used a Legendre transform to obtain this relation directly, thus using
the thermodynamic variables s, T instead of p, p which are typically used in geophys-
ical fluid applications (which we will keep because of using the MITgem). We have

shown therefore that the anelastic approximation expressed in terms of entropy is
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not limited to an ideal gas, and if assuming an adiabatic reference state it takes the

simple form (2.26).

2.2.2 The Anelastic Thermodynamic Equation

An advantage of this form is that it allows a direct connection to the thermodynamic
equation, which in the most complete form for a general equation of state is written
in terms of entropy so that

Ds Q

— + V- (kVs) = =, 2.27

S+ V- (kVs) = = (2.27)
where @ is the heating rate per unit mass, and & is the diffusivity which we will
assume to be constant. Then applying the anelastic approximation, and assuming
a basic state which is adiabatic (constant 5§ — see section 2.2.3), we can write the

thermodynamic equation as

F
o V - (pus’) — kV3s' =

e (2.28)

Sl

The forcing is described in section 2.5. For this system to be consistent for a general

equation of state we need to show that the energy equation has a closed form.

2.2.3 Energetics of the Anelastic System with a General Equa-
tion of State

In the Boussinesq system an energy equation can be derived by scalar multiplying
the momentum equations with the velocity to form a kinetic energy equation. A
potential energy equation can be formed by multiplying a buoyancy term with the
thermodynamic equation. The evolution of the total energy can then be expressed
as an energy flux. Ingersoll (2005) shows in an oceanic context with the density
depending on three thermodynamic variables (pressure, temperature and salinity),
the equations will still be energetically consistent. For the anelastic case Ogura and
Phillips (1962) show that for an ideal gas a similar relation can be formed. We begin
therefore from the momentum equation with the buoyancy in the vertical equation

expressed in terms entropy (2.22)
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where u is the full 3D velocity. We define buoyancy and an anelastic potential as

goT' ,
U = e 2:30
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p

Scalar multiplying (2.29) with pu and using the anelastic mass equation (2.5) gives

8 (P o ' fuo® = = oTp'w ds
— | = A —+®+T = « PN s = . :
5 (2u > + [pu ( 5 +d+Ts pu S C, dr (2.32)

If the background state is adiabatic, so that the second term on the right hand side
vanishes, we can use the thermodynamic equation (taking only conservative terms)
to replace the right hand side of (2.32). Multiplying the thermodynamic equation
(2.28) by 7T gives

g _ _
ﬁTBSt— = TV .(pus') = pu-TVs (2.33)

where we have used the anelastic mass equation again. Then the energy equation can

R R

Therefore for an adiabatic background state there is no requirement to use a specific

be written as

equation of state for the anelastic equation to be energetically consistent.

2.3 The Equation of State

On Jupiter and Saturn the gas is primarily composed of hydrogen and helium with
small amounts of heavier elements. At low temperatures and pressures in the outer
regions of the planet, hydrogen is a molecular gas and the equation of state (EOS) may

be approximated as an ideal gas. Deeper into the interior, however, due to the high
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densities and relatively low temperatures (compared to stars), the giant planets lie
in an extremely complex thermodynamic regime. The main factors that separate the
gas under these conditions from ideal gas behavior are pressure ionization, electron
degeneracy, and Coulomb interactions (Guillot, 2005). We use an EOS calculated
by Saumon et al. (1995) specifically for high pressure hydrogen and helium mixtures
including these thermodynamic complexities. In addition this EOS has been partly
calibrated with high pressure and density experimental data.

Below we review the physics governing this equation of state, estimating the effect
of these phenomena on the pressure, given the density and temperature. Although this
thesis focuses on the fluid dynamics we have devoted significant time to understanding
the thermodynamics and estimating their importance on the equation of state and the
reference state of the model. Eventually this boils down to a choice of an equation of
state and the reference state discussed in section 2.4, but this choice was not obvious
at start. In section 8.2.2 we estimate the gravitational moments of Jupiter using our
model, which are a measurable quantity in the JUNO mission. These results may

give further constraints on future equations of state.

2.3.1 Electron Degeneracy

For stars with mass over 0.3 solar, the typical densities and temperatures imply that
the electrons will always behave with near Maxwellian distribution of the momen-
tum. However, the Giant planets lie in a regime where due to the low mass, the
temperatures are relatively cool, while the densities are high, and therefore the Pauli
exclusion principle yields a distribution which is determined by Fermi-Dirac statistics.
The number of electrons in a volume dV" and with the momentum [p, p+ dp] according

to the Boltzmann distribution function is

f(p)dpdvV = 4”—”’23.3(_%) dpdV, (2.35)

(2mrmekT)?
where k is the Boltzmann coefficient, 7" is the temperature, n, is the number density
of the electrons and m, is the electron mass. Then for a constant n, the maximum of
the distribution function p.. = v/2m.kT tends to smaller values of p as temperature
becomes smaller, and f (p) becomes higher (since n. is given by [ f (p) dp). However,

since electrons are fermions, for which Pauli’s exclusion principle holds, each quantum
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cell of volume dp,dp,dp.dV = h3, where h is the Plank constant, cannot contain more
than two electrons. The Pauli’s exclusion principle therefore demands that

2dpdV
f(p)dpdV < i hf > (2.36)

and therefore giving an upper bound for f (p). Figure 2.1 shows the Boltzmann distri-
bution for different temperatures and the limit from the exclusion principle for both
typical stellar values, and planetary interior values typical to Jupiter. It shows how
due to the low temperatures the exclusion principle is a much stronger restriction for
planetary values than for stellar ones, requiring the electrons to occupy much higher
energy levels. Therefore the equation of state needs to include quantum mechanical

o Solar parameters o Jupiter parameters
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Figure 2.1: The Boltzmann distribution and Pauli’s exclusion principle for both plan-
etary and stellar values.

effects if the temperature is too low or the density is too high. Due to the relatively
low temperatures in Giant planet interiors this happens relatively close to the exterior
(Figure 2.3). These electrons are referred to as degenerate. The transition to a fully
degenerate state is not a sharp one (for a finite temperature). The most probable
occupation of the phase cells of the shell [p, p+ dp] in momentum space is determined

by Fermi-Dirac statistics, where
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8mp2dpdV’ 1
B3 1+ eEAT0

f(p)dpdV = (2.37)

2 . - 3
where E' = ;I is the energy in the non-relativistic case, and ¢ is defined as the

degeneracy parameter. Then

3
8w J& p?dp 87 (2mmekT)?
=Wy Tremw = @ W) e
with
o 9] 2
P n”dn
a(y) = /0 ER =L (2.39)

=

where we have defined n = p (2m.kT) 2. Therefore the degeneracy parameter is a
function of n,7=3/2 only. The limit of large negative values of ¢ represents the limit
of high temperatures with a classic Boltzmann distribution. In the limit of large
positive 1, when introducing an energy so that ¢y = kQTl, then for large enough v’ there
is a discontinuity in the distribution function at energy E,. This corresponds to the
limit of very low temperatures where there is a discontinuity at the Fermi energy.

1t
For intermediate values using m.dE = pdp and p = (2m.E)? the number density

becomes
4 3
Ne = —h—3(2mekT)2F1/2(‘Il), (240)
where
F, (W) = /0 TH W (2.41)

is the Fermi-Dirac function. The electron pressure is

8 3
P, = 3—; (2mkT)? KT Fy)p (V). (2.42)
Therefore for a given density and temperature, by inverting (2.38) (the Fermi-Dirac
integrals have a unique inverse function), the electron pressure P, can be determined.

In Figure 2.2 we show the pressure of the electrons due to degeneracy as function of
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temperature and density. Superimposed is the reference state for Jupiter. It shows
that Jupiter lies in the region where degeneracy is important. where the density has
a stronger cffect than temperature on pressure. Figure 2.2 shows that for Jupiter
the effect of electron pressure is important and, over most of the domain is more

important than the pressure of the atoms themselves approximated by the ideal gas

pressure.
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Figure 2.2: The effect of electron pressure on the equation of state. left: The pressure
P. of the clectrons as function of temperature and density. The black line is the
profile for Jupiter from Guillot and Morel (1995). right: The relative contribution of
electron pressure to the total pressure of an ideal gas of Hydrogen.

2.3.2 Pressure lonization

The ionization level of an atom is determined by its temperature and pressure. This
is usually given by the Saha relation (Kippenhahn and Weigert, 1990) which holds
for high temperatures in the interiors of stars. However, in Jupiter’s interior most of
the 1onization is due solely to pressure. This is called pressure ionization and can be
approximated roughly by the fact that an atom must be ionized if the matter is so
dense that the distance between atoms is smaller than twice the Bohr radius. In this
case even an electron in the lowest possible orbit will not be bound. The condition

for pressure ionization could be approximated as

3 3
‘lﬂ'n"




where d is the distance between atoms, ny is the number density, and aq is the
Bohr number. For hvdrogen this leads to an ionization density of 348 ,’%-? which
corresponds approximately to 0.92 of the radius of Jupiter and 0.8 for Saturn (Figure
2.3). Therefore we can expect the deep interior to be completely ionized. Even in
the regions exterior to the radius of full ionization, the ionization level will still be
heavily influenced by pressure ionization. In the exterior, where pressure ionization
is negligible, calculations from the Saha relation show that temperatures are too low
to cause significant thermal ionization. To estimate the pressure therefore one needs
to take into account the pressure both from the ions and the clectrons. An order of
magnitude estimate is that ions and electrons have similar contributions to the total
pressure (Guillot, 2005).

Thus most of the interior is composed of heavily ionized dense plasma, often
referred to as liquid metallic hydrogen. The physics of the phase transition between
molecular fluid to the metallic fluid caused by the pressure ionization remain poorly
understood. There have been attempts to calculate an equation of state for this
phase transitional regime (Saumon et al., 1995) however recent results by the authors
themselves suggests that their previous results were not accurate. Therefore in the
equation of state we will use we include the effect of pressure ionization, but ignore
any variations in the equation of state from processes involved in the phase transition
itself.

2.3.3 Coulomb Interactions

Another important quantity that has an effect on the equation of state is the coupling
parameter, which is the ratio of the Coulomb potential to the thermal energy. This
measures how strong are the coulomb interactions relative to the thermal energy as
the density changes in the planet’s interior. The coupling parameter for hydrogen is

given by

o L e
T dkT Tk \3ny

where d is the mean distance between nuclei, and e is the electron charge (Guillot,

(2.44)

SR

2005). As I' increases due to either an increase in density or a decrease in temperature

Coulomb forces become stronger. Hubbard (1968) has shown that Jupiter’s interior is
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not expected to crystallize (happens for I' > 180). and should be hot enough so that
the interior will remain a fluid. Saturn’s interior is also expected to remain a fluid.
Tyvpical values for the interior can be seen in Figure 2.3, and the system is dominated

by the repulsive Colombian potential between nuclei.

2.3.4 The SCVH Equation of State

In summary a large fraction of the interior is composed of metallic hvdrogen. In this
region electron degeneracy, pressure ionization., and Coulomb interactions have sig-
nificant contributions to the pressure. Outside of this region hyvdrogen is a molecular
gas, and to a good approximation is close to an ideal gas. In the interior the pressure

can be expressed in the following form (Stevenson, 1991)

[) = [_)f i ])im: I I)r'nuf e 1)&1’- ( s

o
H—
Tt

where P, is the contribution from the degenerate electron gas, P, is the contribution
from the ions. P, 1s a negative term due to the Coulombian interactions of nuclei,
and P, is a negative term due to electron-electron repulsion because of the exclu-
sion principle. Exact calculations of these effects are complex and involve further
approximations that until recently have been untested in the appropriate regimes of
temperature and pressure. Several recent experiments on hvdrogen (Collins et al..
1998; Knudson et al., 2001) now provide data in regimes of interests for giant plancts
and can provide constraints on the equation of state. Saumon ct al. (1995) have calcu-
lated an approximate equation of state (referred to as SCVH), for both hyvdrogen and
helium taking into account all these effects and extrapolating between the different
regimes.

In Figure 2.3 we compare between the SCVH equation of state for hydrogen (bluc),
and an ideal gas (dashed red). To get a feel for rough estimates of the physics diverging
the equation of state from an ideal gas, we show the limits for the phenomenon
discussed in this section. The green lines show the thermal and pressure ionization
limits (2.43), the purple curve shows the clectron degeneracy limit (2.42), and the
magenta curves show the Coulomb limits (2.44) for different values of I'. It is clear
that beyvond 10* bars (2% of the planctary radius) all these effects become important
and indeed bevond this region the SCVH EOS diverges from an ideal gas. In the low

temperature and density limit the SCVH EOS is similar to an ideal gas, while for




T
i

SCVHEOS
| Ideal gas
—— Electron degeneracy limit

2| | ——sahaicnization imit ;’
---Pressure ionization imit i i
4

\-;\_

log p (Kgim®)
o
/ f {

fifmaz, — Coulomb limit 1 = 10
3 E=T=d 2
| § —— Jupiter profile (Guillot, 2004)
| —— SCVH Galleo adiabat ;
2 25 3 35

log T (K)

S < i

45 5

Figure 2.3: Isobars of the hvdrogen SCVH EOS and an ideal gas in logp - logT
space. black: the profile for Jupiter from Guillot and Morel (1995); red: the adiabat
of the SCVH EOS that matches the Galileo observation; purple: the limit where
pressure from the electron gas becomes significant (2.42); dashed green: the limit of
pressure ionization (2.43); green: the limit of ionization from the Saha relation; pink:
where Coulomb interactions are significant with T' = 10 (2.44); dashed magenta: the
Coulomb limit with ' = 1.

high pressures it differs significantly.

In comparison with hydrogen, the EOS of helium under the conditions of interest
for the giant plancts has been less studied. Experimental data for helium is only
available up to 0.56 Mbar (Nellis et al., 1984). A major complication (Salpeter, 1973)
is that hvdrogen and helium mixtures can undergo a phase separation where the
heavier helium will form droplets that will fall towards central regions of the planects.
Nonetheless, Saumon et al. (1995) have computed an EOS for helium. though it has
not been compared against experimental data. This should not affect the results too
much since for giant planet composition mixtures, hydrogen represents about 90%
of the atoms, and helium about 10%. The consequent EOS for hydrogen-helium

mixtures is then calculated using the additive volume rule such that

=1 -y —1 =,

p = (=¥)pg +Yph, (2.46)
where Y is the helium mass fraction. Then the coefficients in (2.20) can be calculated
based on this rule. This method implicitly neglects any interactions between hydrogen

and helium.



Given that by using the SCVH cequation of state for hvdrogen, we are already
making a big step bevond the Boussinesq and ideal gas models, we will not add at
this stage the complexities and uncertainties of the hvdrogen-helium mixtures. Using
the hydrogen SCVH equation of state should be sufficient for the level of complexity of
our model. For example, the ideal gas constant for giant planet composition mixtures
(which is relevant for the outer regions - Figure 2.3), will change by less than 10%
when comparing it to the ideal gas constant of only hvdrogen. The uncertainty in the
other parameters of our model will be probably larger than the discrepancy between
the equation of states with and without the helium component (see section 6.3). In
addition, we will not account for the variations in the hvdrogen EOS at the hvdrogen
phase transition that occurs between the molecular and metallic fluid. The equation
of state for this phase transition has been published with the original SCVH paper.

but the authors have recently reported an error in that calculation.

2.4 The Reference State

As discussed in section 2.2.3. using an adiabatic reference state implies that the
anelastic system is energetically consistent. We have shown that this does not limit
the form of the equation of state and, for a convective driven interior, is thercfore a
reasonable approximation. The Galileo entry probe has found the atmosphere to be
close to a dry adiabat bevond the 1 bar level (Seiff et al., 1997). We find that, when
taking this value of entropy from the Galileo probe measurement, and using it as the
adiabat with the SCVH EOS, the adiabatic profile matches well previous estimates
of the interior mean density-temperature-pressure profile (Guillot and Morel, 1995).
We therefore use this “Galileo adiabat™ as our reference state for the model. The

details of understanding of the interior depend on variations in the adiabacity of the

fluid as suggested by Guillot et al. (1994). However, for the level of sophistication of

this fluid dvnamical model, we feel this constant entropy basic state will suffice. The
variation from this reference entropy is computed dynamically.

The vertical grid is chosen so that grid spacing follows a constant mean pressure
ratio between levels. Relating each pressure level to its vertical depth is set following
calculations of Guillot and Morel (1995), and Guillot et al. (2004). Once the constant
entropy (5), and the mean reference pressure for every vertical grid point are set, the

reference temperature and density can be found from the SCVH EOS. Integrating the
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reference density allows calculating the gravitational acceleration for the vertical grid
(2.4). Figure 2.4 shows these reference fields as a function of depth. In fact for the
dynamics only p(r) and g(r) come in, where the 7(r) is used only in the calculation
of the forcing profile (section 2.5). For every layer separately we then fit a polvnomial

to the SCVH EOS for the variation in density so that
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Figure 2.4: The adiabatic reference state of the model. Plots of density, temperature,
pressure (logarithmic axis), and gravitational acceleration as a function of depth.
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where the derivatives are calculated from the SCVH polvnomial for cach reference
pressure (see Appendix A), and s’ and p’ come dynamically from the model. This
variation in density feeds back to the model dynamies. Thus we have a fully coupled
fluid dynamic-thermodynamic system. To the best of our knowledge this is the first
time such an elaborate EOS has been incorporated to a dynamical gas-giant model.
We feel the modification of the density pressure temperature entropy relationship
will be a considerable improvement to the existing dynamical models, and will give a
much better representation of the planet’s interior and its interactions with the outer
atmosphere.  As discussed in chapter 1 since the gas is largely ionized in the deep
interior the magneto-hydrodynamic contributions which we do not include may be

significant as well.



The pressure-temperature-density relationship is shown in Figure 2.5, where it
can be seen that up to about 1 Mbar (0.9 the radius of the planet) the SCVH EOS

is close to an ideal gas, but it differs substantially for the deep interior.
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Figure 2.5: Contours of pressure in logp logT space for the SCVH EOS (blue) and an
ideal gas (magenta). The adiabatic reference state (black) is close to the calculations
(red) of Guillot and Morel (1995): Guillot et al. (2004). The model uses a different
polvnomial for cach laver (green) to calculate the dynamical density (2.47).

2.5 Forcing

The fact that Jupiter emits more energy than it receives from the sun implies that
internal heat is transported from the planct’s interior to space. The structure of the
dvnamics is related to the mechanisms transporting the heat. In stars heat is often
transported by radiation and conduction. On Jupiter it is estimated that convection
rather than conduction is in effect what is transporting heat (Guillot et al., 2004).
The forcing as applied to the model assumes the vertical profile is close to adiabatic
and that the planet is cooling on long time scales. Suppose we allow for s to vary on
long time scales so that its variation represents the long time cooling of the planct.

We assume that transport of heat is diffusive so the heating has the form

0 = VT, (2.48)
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Over the long non adiabatic time scales the forcing is given by

Ds d5 Gt T

- = . = &) 4
Dt Ot T 4]

The vertical profile of the heating rate (2.49) is shown in Figure 2.6. We constrain
the heating so that, when integrated over the whole volume, the total forcing will
be zero, and thus no net heat is added (or lost) from the system at every time step.
Therefore we shift the conduction profile (2.49) so that the net heating is zero, and
the difference is the heating associated with the long time scale cooling. Then the

actual long time scale cooling is given by

Js T
— = Ck(—= a5
T Cyk < > : (2.50)

where we denoted the difference between the original profile (2.49) and the shifted
vertical heating profile by () . This is the representation of the long time cooling of the
planct, and this term represents the net loss of energy which is seen in observations.

Then the thermodynamic equation (2.28) including the explicit forcing becomes

ds' 1 _ P fNET VT =
B + %)V - (pus’) — kVs' = C,k ( e < = >) : (2.51)

The heat flux (F) is related to the heating rate by % = V - F. Hence, we can

calculate the effective flux at each depth from the heating by

F = lz p?rdr + Fy, (2.52)

rid T
where [ is zero since the flux at the bottom is zero. The normalized heating rate
and heat flux are shown in Figure 2.6. Note that the flux out of the atmosphere is
effectively zero, which is different from Rayleigh-Benard type convection models (e.g.
Heimpel et al., 2005) that have very high outgoing heat fluxes. The interior heat
fluxes are very large but compensate for the use of eddy viscosity terms which are big

due to the size of the grid. We discuss this issuc more in section 4.7.
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Figure 2.6: The applied heating function (red) and the resulting heat flux (black) as
a function of depth. Both are normalized (note that the heating is negative so that
the top levels are effectively cooling and the bottom arc heating). The integrated
forcing (4.29) over the whole domain is zero.

2.6 Model Summary

The model solves the full spherical momentum cquations with no spherical shell ap-
proximations. The mass equation contains compressibility of the mean density which
varies radiallv. The thermodynamic equation is used in terms of entropyv and contains
both advection and diffusion of entropv. The equation of state for the variation in
density includes both entropy and pressure fluctuations, and the vertically dependent
coefficients are given by the SCVH equation of state. This forms a svstem of six equa-
tions (2.8, 2.9, 2.10, 2.7, 2.28, and 2.47) solved for the six unknowns u, v, w, s", p’, and
p'. The gravitational acceleration ¢(r) is calculated from the mean density. These
cquations have the paramecters Q, v, s and Q. These parameters are set by three
nondimensional numbers which control the system: the Prandtl (viscosity vs. con-
ductivity), Taylor (rotation vs. viscous damping) and Rayleigh numbers (buovancy
vs. viscous and thermal damping). These numbers are given by

3 2 1 1 =
Pr==, Ta= % Ra = B (2.53)

VK
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where H is the total vertical extent of the model, and By is given by

1
By e i (@) 2 (2.54)
Ty \H
where the subscript 0 denotes the top level. The heating therefore is normalized by
the reference entropy value s, and thus reduces the system dependence on the specific
choice of the value of 5 (although this choice still sets the other reference values).
By will therefore be the equivalent of the Brunt-Vaisala frequency in a stratified
fluid. To keep the parameter range simple and since the grid spacing is fairly uniform
(aka horizontal scales are similar to vertical scales), we use the same viscosity and
diffusivity parameters in all the equations. Often in the text we will use the Ekman

number Ek = instead of the Tayvlor number. Other model settings, which we

-
QI?
experiment with are the total vertical depth (ranging from a thin spherical shell to
93% of the planet radius - section 6.1), and the rotation rate. Since we consider
several forms of thermal forcing, we may have more than one Rayleigh-like number,

e.g., one measuring the horizontal variation in heating in the top layers.
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Chapter 3

Numerical Results

3.1 Axisymmetric Results

When we observe the circulation on the giant planets it appears to first order fairlv
zonally svmmetric. From a modeling point of view the question is can an axisymn-
metric model capture the main features of this circulation such as the equatorial
superrotation, alternating jets and poleward heat transport? From our experience
with Earth’s atmosphere we know that zonally svmmetric models had success in ex-
plaining some of the features of the general circulation (e.g. Held and Hou, 1980). but
eddy fluxes are crucial in understanding the general circulation (Schneider, 2006).
In this section we present results of axisymmetric calculations. We use the full
3D model but truncate it to one grid point in the zonal direction. Much of the model
development was done in the axisvmmetric setup, which is simpler computationally
and still contains the vertical modifications that were made to the MITgem. When
comparing to the 3D results we find that the circulation is quite different. Nevertheless
comparing the 2D to the 3D results illuminates the role of the zonal asymmetries,
particularly the role of the eddies in driving the equatorial superrotation.  Some
aspects of the circulation do carry over from the 2D to the 3D model and we focus
on those in the first subsections. We will begin by discussing the effect of rotation
on the circulation and then discuss the onset of convection and the critical Rayleigh

number.
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3.1.1 The Effect of Rotation on Convective Plumes

In a non rotating system the intuition about convecting plumes is simple, and con-
vection is associated with fluid motion along the direction of the gravity vector. In
a rotating system the Taylor-Proudman theorem puts constraints on the dynamics,
where now two key players in determining the direction of motion of a convecting
plume, will be the direction of the rotation and gravity vectors.

In many geophysical models due to the traditional small aspect ratio approxima-
tion the horizontal component of the rotation vector is neglected. However even for
deep oceanic convection the aspect ratio within the convection columns may be near
unity (Lilly et al., 1999; Marshall and Schott, 1999). Then the vertical velocities are
comparable to horizontal ones so that this approximation is not valid. In the case of
a deep convective atmosphere this is not valid as well. The traditional approximation
treats the rotation and gravitation vectors as parallel; the issue of convection when
they are not has been addressed in several studies. Numerical experiments by several
authors (c.g. Zhang and Schubert, 1997) have shown alignment of convective flow
with the rotation axis. This issue is not simple to treat in laboratory experiments
because the difficulty of creating a finite angle between the rotation and gravity vec-
tors, and the need of having the center of gravity not coinciding with the center of the
Earth. However as suggested by Busse ot al. (1998) the angle between the buovancy
force and the rotation axis can be produced by the use of centrifugal force. Sheremet
(2004) used this method and found out that occanic tyvpe sinking plumes tend to
sink in an intermediate direction between the effective gravity and the rotation and
shift castward. In a space lab experiment Hart (1985) used a spherically symmetric
electric field acting on a dialectrically insulating liquid to simulate gravity in space,
and address the issue of the direction of the plumes in a rotating svstem.

In this section we show results from the axisymmetric model showing the effect
of rotation on the convectively driven flow. Simplifving the model further, in this
section we use Boussinesq dynamics. In section 4.5 we discuss the effect of rotation
on the anclastic model and show the 3D case, but the essence is captured by the
axisymmetric Boussinesq model. This analysis in 2D is simpler also because we can
define a 2D streamfunction, which will describe the motion in the radial-meridional
plane. In the 3D case we can do this only in cases where rotation limits the motion

to be 2D. Without assuming a small Rossby number we can write the steady state
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Figure 3.1: The meridional streamfunction for axisvmmetric experiments with differ-
ent rotation periods.

vorticity equation (Pedlosky, 1987) as
1
20-Vu+ [w-Vu+ V- (wu)] = —Vp'xyg (3.1)
Po

where w = V x u is the vorticity vector, u is the 3D velocity vector and py is the
constant density. If the low were completely barotropic then for small Rossby num-
bers (or rapid enough rotation), (3.1) would be dominated by the first term. The
Taylor-Proudman theorem then implies that the velocity is constant along the direc-
tion of the rotation axis. However, since the convection drives plumes with horizontal
gradients the flow is not completely barotropic. For slow rotation the vorticity flux
and tilting will balance the baroclinic vorticity production term. For cases of weak
enough convection we find that though locally the Brunt-Vaisala frequency can vanish
(in the plumes), on average over the domain it has a positive (small) value. Therefore
the two physical time scales in the problem, the rotation period, and the buoyancy
period. set the character of the flow. For large 2 the flow will be dominated by the

N2
rotation, and the plumes will align with the axis of rotation giving nearly constant
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velocities along this axis. When % is small the buovancy dominates the rotation

and the plumes align in the direction of the gravity vector. Figure 3.1 shows the
2D radial-latitudinal streamfunction for axisvmmetric cases with different rotation
period. The flow develops circulation cells that change their character based on the
ratio of % Figure 3.2 shows this ratio as a function of the rotation period for a series
of runs varying only in rotation period. For strongly convective flow the buoyancy
frequency will not be a good measure of convection. An equivalent measure of the
convection can be the ratio of the nondimensional numbers
Ta-Pr 407

= =% 3.9
X Fa B, (3.2)

where By has been defined in (2.54). We show in section 4.5 for the 3D case that
this is a good measure to characterize the flow: thus when y > 1 the flow is rotation
dominated and aligns with axis of rotation, and when y < 1 it is not. We discuss
this further in scction 4.5. Figure 3.2 also shows the normalized intensity of the 2D
streamfunction.

The zonal velocity character is very different from the zonal velocity in the 3D
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case. This velocity structure is shown in Figure 3.4 where we compare the 2D to
the 3D flow. The results shown in this section are for an Earth size aqua-planet (a
developmental stage of this model) so numerical values can not be compared between

this section and the rest of the thesis.

3.1.2 The Critical Rayleigh Number for a Rotating Fluid on
a Sphere

We study the onset of convection in the rotating axisymmetric system. This again is
a casc where the axisymmetric results do not differ much from the spherical ones, and
to simplifv the analvsis we look at the Boussinesq case. We look at the onset through
a local linear stability analysis and compare the result to numerical axisvmmetric

results. The lincar system in spherical geometry is given by

Ju 9
(0—(; —2Qsinfv +2Qcosw = vV-iu (3.3)
dv 1 Jp 5
— + 2Qsinflv = ——— + vV 3.4
ot rpo 00 [34)
ow 10 A
;—U 2Qcosfu = — —l + b+ vV (3:5)
it po Or
1 Ov " dw 0 (3.6)
rof  dr
ol ;
51:) +wS = kV? (3L7)
where b = - yp’—: is the buovancy and the rest of the variables and parameters are

defined in 2.2. We assume that locallv we can deseribe the perturbation by the form
[, v, w,b,p] = [ug,vo, wy, by, po] €T ), (3.8)

which allows writing this system as

—ig — " —2Qsinf®  2Qcos 0 0 0 o

2Msinf i — 4 0 0 A2 v

—2Q cos 0 i Al -1 —% wy | = 0{3.9)
0 —u —im 0 0 by
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67




where we have approximated the Laplacian operator by dropping first order deriva-
tives and denoted the total wavenumber a? = — (I + r?m?). Solving this system for

o = 0 gives the critical value for instability. This eritical value occurs at

(2Qcos 0 + 2Qsin frm)®  aSrv

K
5 = = 7 e vy (3.10)
and gives an expression for the critical Rayleigh number
20\* r* (Icos O + rmsin0)*  aS
B e |y L GEE S BRRRA (3.11)
v [? i

Therefore the critical Rayleigh number is composed of two terms. The first depends
on the rotation period, and the other purely on the wave numbers. In the limit
of slow rotation the solution is dominated by the second term implying that the
onset of convection does not depend on latitude. The solution in this limit is the
classical critical number for Rayleigh-Benard convection (e.g. Chandrasekhar, 1961)
for the case where the zonal wave number is zero. Busse (2002) studies the onset of
convection in an annulus and finds a similar structure to the critical Rayleigh number,
though with no latitudinal dependence due to the different geometry. In the limit of
rapid rotation if the first term dominates then the onset of convection will depend on
latitude.

We can test this solution using the numerical model. To allow quantification of
the dependence of the onset of convection on latitude we use a simplified forcing.
Instead of forcing by the profile shown in Figure 2.6 we apply a heat flux to the
bottom boundary, which is relaxed by Newtonian cooling at the top. We assume the
latitudinal number of plumes is related to the meridional wave number, and then can
plot the intensity of the plumes during the initial stages of convection as a function
of latitude. In Figure 3.3 we compare the outbreak of the convective plumes as a
function of latitude and compare that to the inverse of the critical function obtained
in (3.11). The bottom pancl shows a qualitative match between the two profiles. The
intensity of the convection is stronger towards the poles where the critical Rayleigh
number is smaller. When we look at the spin-up of the model with more complicated

schemes of forcing we see also stronger initial convection at higher latitudes. We find
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Critical Ra # as a function of meridional wavenumber and latitude
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Figure 3.3: The critical Ravleigh number as function of latitude. (bottom) The color
plot is the intensity of the convection at its onset, for a case where forcing is applied
as a bottom flux. The dashed line is the inverse of the critical Rayvleigh number
(3.11), which matches the profile set by the outbreak of convection as a function of
latitude. (top) The critical Rayleigh number as function of latitude and wavenumber.
The level I = 17 correspond to the dashed line in the bottom panel.

therefore that for a radius r, when

20012\ ?
(llﬁ“> 5 1L (3.12)
wE

the critical Rayleigh number decreases with latitude.

3.2 From the 2D to the 3D Model

Duec to the natural axisymmetric appearance of thermally convecting rotating systems
in nature, theyv have been initially studied for axisyvmmetric cases. Chandrasekhar
(1961) showed that thermal convection in a rotating fluid for high Taylor numbers
will form convection cells. Roberts (1968) was the first to show that lincar asym-
metric modes will be the most unstable in a spherical shell when forced internally by
convection. In several studies Busse suggested that these modes are related to the jets
seen on the outer planets and may lead to equatorial superrotation (e.g. Busse, 1970,

2002). Even on Earth’s atmosphere, although a very different type of system, the
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statistically averaged flow appears axisymmetric. However, the mechanisms driving
this flow do depend on the zonal asyvmmetries (Schneider, 2006).

Comparing our axisymmetric simulations to the 3D ones we find that the zonal
asymmetries completely change the character of the circulation. The axisvmmetric
model is composed of mainly up-down motion along the direction of the axis of rota-
tion with zonal velocities produced by divergences constrained by mass conservation
of this convective flow. For rapid enough rotation the Taylor-Proudman theorem lim-
its the motion. As a simple example we can think of the flow at the equator in the
axisymmetric and Boussinesq case. At the equator the direction of the axis of rotation
coincides with the latitudinal direction and therefore the Taylor-Proudman theorem
implies that the meridional velocity is independent of the latitudinal direction. Since

the velocity is non-divergent, then both derivatives independently become zero

10_1 B dw

=3 = 0. (3.13)

Then, since the boundary condition has no normal flow there can be no flow along the
equatorial plane. Since the presence of convective plumes drives the flow away from
a completely barotropic state, the Taylor-Proudman theorem does not completely
apply cven for the Boussinesq case and thercfore some cross-cquatorial flow does
develop even in the axisymmetric model. However in the case of forcing only by a
bottom boundary flux (as in section 3.1.2), we find there to be nearly no flow on the
equatorial plane. A similar argument will hold for the anelastic case even though the
mass divergence contains the mean density. It can be seen in Figure 3.4 that for both
cases the equatorial region is fairly quiescent. In the 3D case, having the extra degree
of freedom, the full 3D velocity divergence allows motion on the equatorial plane
both in the zonal and radial directions even if the Tavlor-Proudman constraint is
fully applicable. In chapters 4-6 we discuss in detail the 3D solution, and in chapter 5
we show how this motion on the equatorial plane drives the equatorial superrotation.
In Figure 3.4 we show the Anelastic and Boussinesq cases in 2D and the equivalent
plots for the zonally symmetric flow in 3D. The left panels are the zonal velocity and

right pancls are the meridional 2D streamfunction of the zonally averaged velocity.
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Figure 3.4: Comparing 2D and 3D Boussinesq and anclastic models. Left pancls arce
zonal velocity (with m/s values in the colorbar), and right pancls are the 2D (r — 0)
streamfunction (zonally averaged fields for the 3D cases). 3D runs have parameters:
Ra=1E7, Ek=15E —4, Pr =10, and 2D runs Ha = 1E6, Ek =4FE — 4, Pr= 10
(anelastic) and Ra = 3E6, Ek = 1.5F — 4, Pr = 10 (Boussinesq).




3.3 The 3D model

In chapters 4-6 we discuss and analyze the 3D results. As a reference for the rest of this
work in this section we present a series of plots which will be the baseline for future
discussion. To describe the 3D spherical statistical steady state of the model, we
present some of the basic ficlds in three orthogonal slices on the planct: a meridional
(pole-to-pole) slice of the zonal mean flow, an equatorial 360° slice around the planct
(for some runs we have done only 90°), and slices on constant mean pressure surfaces.

The meridional extent of these runs has been from latitude 80°N to 80°S. The
choice of not extending the model to the pole was based on numerical convenience
since the convergence of the grid at the pole will require more computation time. In
addition we were more interested in the equatorial dynamics and therefore made this
choice. The depth of the fluid layer was chosen for these runs at 0.55 the radius of the
planet, which corresponds to approximately to 20 Mbar. In chapter 2 we have shown
that beyond about 100 kbar the thermodynamics become different than an ideal gas,
and therefore we are well into that regime. Most previous models of convection in
a deep shell put the bottom boundary at a higher level. However, it has not been
clear how much that choice influences the results (in particular the extent of the
superrotation). One of the goals of this work is to study the dynamics of a deep
system and therefore we deliberately push the bottom boundary deep even bevond
what is generally accepted. In section 6.1 we study the dependence of the dynamics
on the location of the bottom boundary using a series of runs ranging from a thin
spherical shell to a full 3D sphere. We use slip boundary conditions on the bottom
and side boundaries, and a free surface on top.

All runs we present here have a 1° resolution and a factor of 1.33 in pressure
between each vertical level, with a total of 120 vertical grid points, giving a total of
160 x 360 x 120 grid points. Because of the convection, the numerical time step is
small (5 seconds) and the runs typically require at least 5£5 time steps to reach a
statistical steady state, beginning with a zero mean flow initial condition and small
random noise. We run typically on 16 parallel processors and computation time for
such a configuration is about 6 weeks. We found that using only part of the sphere
(typically i of the sphere zonally) with periodic longitudinal boundary conditions
does not affect the results much, and allows cutting computational time by a factor

of 4. Some of the runs we show therefore will be of a slice of a fourth of a sphere.
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Mainly for presentation purposes throughout this work we use the meridional and
zonal components of the vector streamfunction ¥ to describe the flow on a 2D slice.

Since the quantity pu has zero divergence we can define this streamfunction as
VxV¥ = pu, (3.14)

where ¥ is a 3D vector. In component form this gives

1 d(Wycosd) 0¥y - 3.15)
rcos f ol do | e e
1[ 1 0¥, 9(rv,)] . '

= — — ) : 1
r [(-050 do or | i (3.16)
%[‘)(gf’”) ‘);” = i (3.17)

Duc to the symmetry along the axis of rotation, on the equator we assume the changes
along the axis of rotation (which coincide with the # direction along the equatorial
plane) are small, and then can neglect the terms containing changes in the 6 direction
for the equatorial plane. Then, we can integrate either (3.15) or (3.17) to find ¥,. We
refer to this meridional component as the equatorial streamfunction. In Figure 3.11
we show velocity vectors superimposed on the equatorial streamfunction showing that
integrating from either (3.15) or (3.17) is consistent. As one moves away from the
cquatorial plane this approximation becomes less accurate. For the W, component we
find that since the motion is 3D, we can not describe ¥, as a 2D field. The zonally
averaged values are presented as the averaged meridional streamfunction W,,.

We show in this section results from two runs which have identical paramecters
except for the Rayleigh number. Our goal is to run the model in a regime which is
as turbulent as the numerics will allow, and therefore have a Rayleigh number which
is as high as we can afford (also depends on grid and time step), though it is harder
to identify the physical processes in those runs. Therefore in section 5.1 we study in
detail a run with a low Rayvleigh number which allows ecasier analyvsis of processes.
The runs we present in this scction have Ra numbers of 5E7 and 3E6 which we
will refer to as the high and moderate Rayleigh number runs respectively. We begin
with the high Rayleigh number run, and in Figures 3.5, 3.6, 3.7, and look at slices
on surfaces of constant mean pressure (depth) which are roughly at the top surface,
0.86, and 0.59 of the radius respectively (1bar, 1 Mbar and 10 Mbar). The fields are




averaged over a period of 1 day. For cach surface we look at the three components
of velocity, density anomaly, entropy anomaly, and vorticity (top surface) or pressure
anomaly (bottom two). Velocity ficlds show the effect of the mean density with
smaller velocities in the interior and the superrotation at the equator with a weaker
Hadley cell in the meridional direction. The thermodynamic fields show how density
is strongly affected by pressure in the higher levels while becoming more dependent on
entropy in the lower levels. We discuss this issues in scction 4.3.2. Figure 3.8 shows
the corresponding fields for the same high Rayleigh number run on the equatorial
planc, including the equatorial 2D streamfunction (flow in the » — ¢ plance), showing
cyvclonic eddies on the equatorial plane. The zonally averaged meridional slices are
similar to the moderate Rayleigh number runs (only with stronger velocitics), and
therefore we show them for that run only.

For the moderate Rayleigh number runs we look both at the instantaneous fields,
and at the time averaged fields averaged over 12 days. Beginning with the instan-
tancous fields (snapshots) in Figures 3.9, 3.10, 3.11 we show the zonally mean ficlds
on the meridional plane, the surface at 1 bar, and the equatorial plane respectively.
Then we show the same slices for the 1bar surface and the equatorial plane without
repeating the meridional plane that is quite similar to the instantaneous fields because
of the zonal mean. In the following chapters we discuss the features of these runs in

more detail and discuss their dynamics. Figures 3.5 - 3.13 follow below.
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Figure 3.5: 1 bar surface ficlds averaged over 1 day for a high Rayleigh number run:
Ra =5E7, Ek = 1.5E — 4, Pr = 10. upper left: zonal velocity |m/s|; upper middle:
meridional velocity [m/s|; upper right: vertical velocity |m/s|; lower left: density
anomaly |A'g m*|; lower middle: converted entropy (see Appendix A) anomaly | KA|;

lower right: vertical vorticity [10~%s™!|.
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Figure 3.6: 1 Mbar surface ficlds (0.86 of the radius) averaged over 1 day for a high
Rayleigh number run: Ra = 5E7, Ek = 1.5E —4, Pr = 10. upper left: zonal velocity
[m/s]; upper middle: meridional velocity [m/s|; upper right: vertical velocity |m/s|;
lower left: density anomaly |K'gm ?|; lower middle: converted entropy anomaly |K]|;
lower right: pressure [kbar].
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Figure 3.7: 10 Mbar surface ficlds (0.59 of the radius) averaged over 1 day for a high
Rayleigh number run: Ra = 5E7, Ek = 1.5E —4, Pr = 10. upper left: zonal velocity
[m/s|; upper middle: meridional velocity |m/s|; upper right: vertical velocity [m/s|;
lower left: density anomaly | gm 3|; lower middle: converted entropy anomaly |K|:
lower right: pressure [kbar].
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Figure 3.8: Equatorial plane slices averaged over 1 day for a high Rayleigh number
run: Ra = 5E7, Ek = 1.5E — 4, Pr = 10. upper left: zonal velocity |m/s|; upper
middle: meridional velocity [m/s|; upper right: vertical velocity [m/s|; lower left:
converted entropy anomaly | K'|; lower middle: density anomaly | Kgm *|; lower right:
cquatorial streamfunction [1/s].
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Figure 3.9: Snapshots of zonally averaged fields on a meridional section for a run
with a moderate Rayleigh number: Ra = 3E6, Ek = 1.5E — 4, Pr = 10. Upper left:
zonal velocity |m/s|: upper middle: meridional velocity [m/s|; upper right: vertical
velocity [m/s|: lower left: converted entropy anomaly |K]; lower middle: density
anomaly |Kgm=3|; lower right: 2D meridional streamfunction |1/5].




Figure 3.10: Snapshots of fields at the 1 bar surface for a run with a moderate Rayleigh
number. Ra = 3E6, Ek = 1.5E —4, Pr =10. Upper left: zonal velocity |m/s|; upper
right: meridional velocity [m/s]; middle left: converted entropy anomaly | K |; middle
right: density anomaly |Kgm™3|; lower left: pressure anomaly |bar|; lower right:
momentum flux [10~1m?/s?].
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Figure 3.11: Snapshots of fields on an equatorial section for a run with a moderate
Rayleigh number: Ra = 3E6, Ek = 1.5E — 4, Pr = 10. Upper left: zonal velocity
|m/s]; upper right: zonal velocity anomaly (subtracting the zonal mean from the
zonal velocity) |m/s|; middle left: vertical velocity |m/s|; middle right: 2D equatorial
streamfunction [1/s]: bottom right: converted entropy anomaly | A'|; density anomaly
[Kgm ?|.
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Figure 3.12: 1 bar surface for a run with a moderate Rayleigh number time averaged
over 12 days. Ra = 3E6, Ek = 1.5E — 4, Pr = 10. Upper left: zonal velocity |m/s;
upper right: meridional velocity [m/s]; middle left: converted entropy anomaly |K;
middle right: density anomaly |Kgm™3|; lower left: pressure anomaly [bar|; lower
right: momentum flux |10 m?/s?|.
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Figure 3.13: Equatorial scctions for a run with a moderate Rayleigh number time
averaged over 12 days: Ra = 3E6, Ek = 1.5E — 4, Pr = 10. Upper left: zonal
velocity [m/s|; upper right: meridional velocity [m/s|]: middle left: vertical velocity
[m/s]; middle right: 2D equatorial streamfunction |1/s|; bottom right: converted
entropv anomaly |K|; vertical momentum flux |m?/s?|.
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Chapter 4

Basic Balances and the Vertical Wind

Structure

4.1 Introduction

One of the most fundamental questions regarding the atmospheres of the gas giant
plancts is how deep are the strong winds which are observed in their atmospheres.
The only direct observation is from the Galileo probe, which showed an increase in
zonal velocity from 80 m/s to 160 m/s down to the 4 bar level, and then a constant
wind speed for as far down as the data could be retrieved (the 24 bar level), (Atkinson
et al., 1996). Bevond the problem of having only a single measurement profile, the
probe entered a “hot-spot™ which may not be a good representation of the general low
(Bagenal et al., 2004). Other observational evidence for the deep flow comes from the
fact that the heat emission on both Jupiter and Saturn has a nearly uniform merid-
ional structure (Ingersoll, 1976; Hanel ct al., 1981, 1983). suggesting deep transfer of
heat (Ingersoll and Porco, 1978). One of the main goals of the JUNO mission is to
put constraints on the depth of the jets via gravity measurements (section 8.2.2) .
Recently, Liu (2006) put theoretical constraints on the possible extent of deep flows
based on the ohmic dissipation created by the zonal flows in an electrically conducting
fluid by the magnetic field. They suggest that if the zonal flows in the interior would
be as strong as they are on the surface. and the magnetic field can also be deduced by
the surface values, then the zonal winds could not penetrate more than 0.95 and 0.87

of the radius on Jupiter and Saturn respectively. In this study we do not include the
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cffect of the magnetic field; however we show that even without the magnetic ficld
acting to dissipate the flow in the interior, we do not expect to find interior velocities
as large as the atmospheric ones, based only on the big increase in density between
the outer atmosphere and the interior.

In this chapter we attempt to address the question of the deep velocities using
our numerical model. Previous models could not address this issue since they were
cither shallow type models (c.g. Cho and Polvani, 1996; Showman ct al., 2006) or
deep models that were restricted to the Boussinesq approximation (Sun ct al., 1993;
Zhang and Schubert, 1996, 1997; Aurnou and Olson, 2001). For example Heimpel
et al. (2005) and Heimpel and Aurnou (2007) show superrotating equatorial zonal
flow, with higher latitude meridionally confined jets in a Boussinesq model which
goes down to 0.9 of the planetary radius. The zonal velocities persist throughout
the depth of the planet, and the meridional extent of the equatorial superrotating jet
depends on the location of the bottom boundary. Clearly for addressing the baroclinic
structure of the zonal winds we want allow density variations over the depth of the
planet. Using both an anelastic model and a suitable equation of state allows us to
address this issue more thoroughly. We try to decouple our results from the choice
of the location of the bottom boundary and therefore push it deep below what is
belicved to be the boundary of the molecular fluid (we experiment with the bottom
boundary location in section 6.1). We find the compressibility effects very important
in understanding the vertical wind structure.

As discussed in the introduction, based on emission measurements and on 1D ra-
diative theoretical models it is believed that the deep atmosphere is in a convective
state (Guillot, 2005). A common assumption is that if the interior is convective it is
close to a purcly barotropic state. This is based on the assumption that convection
causes uniform mixing limiting the density variations across pressure surfaces. We
note two things: First convection tends to form plumes meaning that cven if the at-
mosphere is driven by strong convection since the regions of strong upwelling plumes
tend to be very localized (Lindzen, 1977), much of the atmosphere may be slightly
stably stratified with small regions of convectively unstable plumes, and the atmo-
sphere can still have horizontal density gradients. Sccond, the density anomalies arce
not just a function of entropy or heat anomalies, but also in an anelastic system are
affected by the compressible effects, thus giving a significant baroclinic contribution.

In this chapter we begin by looking at the basic balances showing that to first or-
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der the motion is geostrophic and hydrostatic. Then we show how the thermal wind
relation is revised when considering a deep atmosphere rather than one restricted
to a spherical shell. Incorporating the anclastic approximation the vorticity equa-
tion highlights the importance of the baroclinic contributions, which are not small
for a compressible gas. In the barotropic limit the system will still give the Tavlor-
Proudman constraint, but this is a more specific case than it appears for a Boussinesq
fluid. We show that anclastic models must have density depending on two thermo-
dvnamic variables and otherwise can be misleading. We show how convection drives
the svstem away from a barotropic state, and thus awayv from the Tavlor-Proudman
constraint. The convectively driven flow in steady state is in a state in between hav-
ing Taylor columns, with the zonal velocity being constant along the direction of the
rotation axis, to constant momentum (pu) along this direction. The baroclinie contri-
butions therefore set the vertical shear, and in section 4.7 we proceed to parametrize
the shear of the zonal flow using scaling arguments. We show the details of the interior
circulation including the formation of large scale columnar structures which have been
suggested in qualitative studies (Busse, 1976). These columnar structures surround
the interior core and have vorticity in the same sense as the mean shear. We analvze
the angular momentum and heat flux budgets and show the roles of eddy and mean
fluxes in driving the circulation. We find that the zonal asymmetries and angular
momentum eddy fluxes play an important role in transporting angular momentum to

the equator and forming the equatorial superrotating zonal flows.

4.2 Basic Balances

Given the set of model equations (2.7), (2.8). (2.9). (2.10), (2.28) and (2.47), and the
solutions presented in section 3.3 we begin by looking at the leading order balances
in these solutions. These balances are important for understanding the key physical
mechanisms in the dynamics and for further analysis when developing theories with
higher order expansions. Beginning with the zonal momentum balance, for small

Rossby and Ekman numbers the leading order terms in the momentum equations
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Figure 4.1: Geostrophic balance: the two plots on the left show the geostrophic
balance for the zonally averaged fields (meridional section) and the difference between
them is shown on the right.

(2.8-2.10) give
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where all variables and coordinates are the same as defined in chapter 2. Density and
pressure have been expanded as in (2.1 and 2.2) to a mean horizontally independent
hydrostatic part and an anomaly. Note that we are using the standard form of the
vertical momentum equation and not the equivalent anclastic form with the revised
gravity term as in (2.26). As discussed in section 2.2 in the decp system, apriori
all four Coriolis terms contribute to the geostrophic balance. Here we show that
indeed this is the case. The numerical results presented here are from 3D runs at a
1° resolution and 120 vertical levels extending to 0.55 the radius of the planet. The
pressure variation is from 1 bar in the upper level to 12 Mbars in the interior with a
pressure increase of ratio 1.33 between vertical levels. Rayleigh, Prandtl and Ekman
numbers as defined in (2.53) are 5E7, 10 and 1.5F — 4 respectively. In Figure 4.1

we show that to the first order the flow is in geostrophic balance; thus the pressure
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Figure 4.2: Hyvdrostatic balance: left: buovancy term: middle-left: radial pressure
gradient; middle-right: difference between the panels on the right; right: vertical
Coriolis term

gradients are in balance with the Coriolis term in equation 4.2. In (4.1) the zonally
averaged Coriolis terms balance cach other. The ageostrophic contributions to the
momentum equation are an order of magnitude smaller and are dominated by the
convection, which gives the signature of plumes aligned with the axis of rotation
as shown in section 3.1.1 for the 2D case and will be discussed later on for the 3D
case. This implies that for the parameter regime of Jupiter the assumption of a small
Rossby number, which will be used in later analvsis is valid.

Next we look at the vertical momentum balance. In the traditional shallow type
svstem the leading order balance would be between the vertical pressure gradient and
buovancy giving hyvdrostatic balance (beyond the higher order basic state hyvdrostatic
balance g? = —pg). However due to the large aspect ratio, the Coriolis acceleration
in the vertical momentum balance is not negligible. In Figure 4.2 we show that the
difference between the hydrostatic terms is almost exactly the vertical momentum
equation Coriolis term. This verifies that (4.3) is indeed the leading order balance.
This is important when looking at thermal wind balance for the deep system which
we do in the next section. Therefore we refer to the basic balance being geostrophic
and hydrostatic but unlike the classic shallow fluid case it includes the non-negligible

vertical Coriolis term.
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4.3 The Vertical Structure of the Zonal Velocity

4.3.1 Thermal Wind for a Deep Anelastic Setting

We begin by revisiting the thermal wind relation for a deep atmosphere. As discussed
in section 4.2 unlike the traditional approximation the aspect ratio between vertical
and horizontal scale is not small, and therefore the Coriolis term in the vertical
equation and the one associated with vertical motion in the zonal equation are not
negligible. We are interested in the effect of the Coriolis terms and the density gradient
on the velocity structure. Taking the radial derivative of (4.2) and using (4.3) gives
2 = +%—i0/) (()tf)u-l(()t()%—lzu (4.4)
ar 2Qrpsin 6 00 r 00 r a0  por
More information would be needed to get independent expressions for the vertical
and latitudinal velocity gradients, but noting that the direction parallel to the axis

of rotation is given by

0 J 10
— = sinf— +cosf—— 4.5
0z or r o6 .
we can write the zonal velocity gradient in the direction parallel to the rotation axis
as
du g 9 u apf  10p
e e o Sl ——u sin 6. (4.6)

9z 2upal  pr 90  por

This expression includes non orthogonal derivatives, unlike the standard approxi-
mation (Pedlosky., 1987) which is sufficient for a shallow system where the shear is
assoclated with the perpendicular density gradient. In addition the zonal velocity
gradicnt has contributions from both the vertical and latitudinal density gradients.
Note that all terms on the right hand side have the mean density in the denominator.
If density gradients driven by the internal convection have roughly the same scale on
the top and bottom of the deep atmosphere, while the density is much bigger at the
bottom rather than on top, one may expect a stronger vertical shear on top than at
the bottom. We look at this more in detail in section 4.7 and show a parametriza-
tion for the shear based on scaling arguments which we compare to the numerical

results. Scaling the terms in (4.6) shows that the second term on the right hand side
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is an order £ smaller than the other terms. Then the leading order balance becomes
7 5

approximately
du g Op 13Jp

= P20 ginp A7
Bz Xup ol por )

Therefore the shear in the direction of the rotation axis is composed of the meridional
density anomaly gradient and the vertical mean density gradient. In section 4.3.2 we

show numerically how cach of these varies spatially.

4.3.2 The Role of Compressibility in the Baroclinic Vorticity
Production
Another way of obtaining balance between the zonal velocity and the density gradients

would be to take directly the curl of the 3D momentum equation multiplied by the

full density p giving
20V - (pu) —2Q2-V (pu) = Vpxg. (4.8)

Then, assuming the density has a mean horizontally independent hvdrostatic part

and a smaller anomaly (2.1), and applying the anelastic approximation (2.5) gives
20-V(pu) = Vp' xg (4.9)

which is similar to (4.7). In the Boussinesq limit this gives the standard thermal wind
relation. Note that if the right side would vanish this would not be the barotropic
limit, since in the barotropic limit the cross product of the full density and full pressure

vanishes. To see the barotropic limit we rewrite the right hand side of (4.9) as
: -y 1
Vpxg = =VpxVp—--Vpx Vp. (4.10)
P P
where we have split both density and pressure into a hydrostatic part and a smaller

anomaly (2.1, 2.2). In the barotropic limit the second term on the right hand side of

(4.10) is identically zero, and for a geostrophically balanced fluid the first term would
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give
i — | - =
=VoxVp = =Vpx (p2Q2 xu) =uVp-2Q —-2Q(Vp-u) (4.11)
p p

Using the anelastic approximation and expanding the right hand side of (4.8) with
(4.11) gives

205 -Vu—20pV-u = 0 (4.12)

which is the classic Taylor-Proudman theorem for a barotropic fluid (Pedlosky, 1987).
Thus if the fluid is barotropic we would expect that the zonal velocity is independent
of the direction parallel with the rotation axis and, if the fluid is also Boussinesq we
expect that the full velocity vector is independent of this direction. We are interested
though in going away from these two limits and study the role of the baroclinic effects
in an anelastic fluid driven by convection. The convection would drive the density
gradients away from zero, and the level of baroclinicity will set how far we are from
the Taylor-Proudman theorem regime. The baroclinic form of (4.12) can be scen by
taking the curl of the momentum equation (without multiplying by the density first)
giving

1
20 - Vu—20pV-u = —=[Vpx Vp +Vy x Vp|. (4.13)
[)

Expressing the density in terms of pressure and entropy as in (2.20)

/ dp ', (9 :
Yaolpsg = (d—;) Vp' + (a—i)> Vs (4.14)
s 5 P

allows rewriting the vorticity equation (4.13) for an adiabatic reference state to the

highest order as

2Qp-Vu —-20pV -u = —i (@> V' xVWp= (Q) Ve xg (415)
p\0s/, ds ),

Hence, equations (4.9) and (4.15) give two equivalent forms of the vorticity equa-
tion where the baroclinic terms are given once in terms of the density gradients, and

once in terms of the entropy gradients. We have shown in chapter 2 that for an anelas-
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Figure 4.3: The contributions of entropy and pressure to the density anomaly and
shear. left: the entropy anomaly contribution to (4.17), middle: the pressure anomaly
contribution to (4.17): right: the density anomaly contribution (equal to the sum of
the two left panels - equation 4.14).

tic and adiabatic fluid the buovancy naturally is given in terms of entropy rather then
density (since the background density is varving while the entropy is not). Therefore
this form of the vorticity equation is consistent with the barotropic limit where the
right hand side vanishes. However, while in a Boussinesq fluid the velocity divergence
will vanish as well giving the standard Tavlor-Proudman theorem in the anclastic
case it will not and therefore the velocity gradient will depend on the compressibility.

To understand the role of the pressure gradient from (4.14) in (4.9) we consider

only the zonal component of (4.9) and (4.15), so that

ou ag Os'
W )Vp—— — o )
_Q/)a: T (4.16)
) ag s’ Bgdp’

2&25—2 (pu) = (4.17)

= .

r o0 r 06
where o and 3 are the isentropic and isobaric coefficients in (4.14), which are defined
explicitly in (2.20). Therefore subtracting (4.16) from (4.17) shows that the relation
07) - ,'}g 0])'

200u— =
..Qua: .Y

(1.18)

must hold. This means that the pressure contribution to the density anomaly accounts
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Figure 4.4: The vorticity equation balance

for the variation in the mean density. Expression (4.17) then suggests a few possible
sitnations: if the contribution of (4.18) to the right hand side of (4.17) is small, then
the zonal velocity gradient would depend on the derivative of the entropy anomalies.
In the barotropic limit this would give the standard invariance of « in the direction
parallel to the axis of rotation, similar to the barotropic Boussinesq case. However
if the contribution of (4.18) is not small then compressible ceffects are important and
the system becomes different from the barotropic case. In a particular case where the
two terms on the right hand side of (4.17) cancel each other then we expect the zonal
momentum (pu) to be constant along the z axis.

We find that in statistical stcady state of our numerical simulations the system is
in a state in between these two extreme scenarios and that this level of baroclinicity
depends greatly on latitude. In Figure 4.3 we look at cach of the terms in the vorticity
equation to see its relevant contribution in (4.17). We can see that the contribution
of pressure anomalics is large especially around the upper boundary while entropy
contribution is larger in the interior. This is seen clearly also in Figures 3.5, 3.6 and 3.7
which are surface slices taken roughly at the top middle and bottom of the atmosphere.
Near the top density anomaly is strongly influenced by the pressure anomalies while in
the interior density anomalies arc influenced by the entropy anomalics. If we would

not have included the pressure variation contribution to density, then the density

94



400

200 200
0 0
-200 -200
-400 400

Figure 4.5: The zonally averaged zonal velocity for an Anelastic run (left) and a

Boussinesq run (right). Runs differ in Rayleigh number : Ra = 3E6 for Anclastic
and 1E7 for Boussinesq where Ek = 1.5E — 4 and Pr = 10. (Figure 3.4 shows a
similar plot with same Ravleigh numbers for both runs).

represented only by entropy anomalies will not be balancing the compressible part of
the term on the left hand side of 4.17. In a case of small entropy anomalies this will
lead to appearance of having pu close to constant along the direction of the rotation
axis. Therefore we conclude that the pressure contribution is crucial when using the
anclastic approximation. In a Boussinesq system where the system has a constant
mean density the perturbation can be described by only the entropy.

In order to understand the zonal velocity vertical structure we should look at how
the density contributions above contribute to the different components of equations
4.9 and 4.15. First we note that looking at the two right pancls in Figure 4.4 shows
that relation 4.9 holds as we expect for a small Rossby number. Then breaking this
balance into its components on the two left hand side panels in Figure 4.4 shows
that at low latitudes the z-shear of the zonal velocity itself is smaller than at high
latitudes, but at the higher latitudes where the z-shear of zonal velocity is larger it is

accompanied by a compensating shear in p leading to a partial cancellations of these

two contributions.




4.3.3 Anelastic versus Boussinesq Cases

The importance of the anelastic effects are demonstrated in Figure 4.5 where we
compare two similar runs one anelastic and one Boussinesq. The anelastic case has
the density varying from 0.15 Kg/m® at the top level (at 1 bar of pressure) to 1983
Kg/m? at the bottom level (Figure 2.4), while the Boussinesq case is set so that the
mean density is constant and equal to the weighted averaged density of the anelastic
case (921 Kg/m?*). In this case Anclastic and Boussinesq experiments have similar
magnitudes of their zonal velocity. In Figure 3.4 we show similar 3D experiments
where the anelastic and Boussinesq runs have exactly the same parameters. For the
Boussinesq runs since the mean density does not depend on pressure the density
anomaly is just a function of entropy and not of pressurc. In Figure 4.5 we look at
meridional slices comparing the zonally averaged zonal velocity fields.

Both runs have a similar velocity structure at the surface; however while the
Boussinesq run is barotropic (in the z direction) with strong velocities in the interior,
the anclastic case has strong baroclinicity near the surface with strong shears at mid
and high latitudes with a weaker baroclinic structure (though still not barotropic)
closer to the equator. The meridional extent of the superrotation is similar in both
cases. To look at the baroclinic structure along the z axis more specifically we look at
velocity sections along the 2z axis for two runs of similar Rayleigh numbers. In Figure

4.6 each section is named by the latitude in which it outcrops at the surface.

4.4 The Angular Momentum Balance

In section 4.2 we showed that to the leading order in the zonally averaged zonal
momentum cquation the vertical and horizontal Coriolis terms would balance cach
other. Next we look at the dynamical balances of the zonally averaged zonal momen-
tum equation. We divide the zonal velocity into a zonal mean and a deviation from

that mean denoted by

v = u+u. (4.19)
Then to the leading order
Ju uw uv 1 1 S >
a—l; + 2 Y ang—20sin 0742 cos b+ =V - (upu)+-V- (pu'a’) = vV?u (4.20)
b p p

96



lats’ lat 10° iat 15~ lat 20" lat2s’

60— | 460 460 | 550 | 600
| | [ Andiustic

440 440 “awp o 550[ |~ Boussinesq| |
| 77 s00 ,4‘ f
| a20 £ /| s00 /

420 420 1 / / f
| 400 a0 /1 asol /

400

| 7 30 / /| a00 /
: y 1 400_’,/,4 /
380 | 380 F. ! /
[ 360 / | 350 /
| y
] ; 350 / 1
) S {ss0f T | i {500 =

340 340 320 ) 300, - 250

[] 5 0 10 0 15 20 o e
It 30° at 35’ iat40’ latas’ 1at50’
600 350 180 501 =
| /} e
860 I} 300 i N o { 100
| /| 100 P 11 \
/izso 1 || -150
400 1 i = | 50 |
‘ 200 /1 50 !i 200
300 -100 |
180 ——" 1 -250 1
1 | -1
20 100 | [~ 300} __————— ]
| w /__/—/“1
| | ‘
100 50 50 ' 200 " -350
[ 30 0 35 L] 40 L] 45 0 50

Figure 4.6: Zonally averaged zonal velocity for Anelastic and Boussinesq runs along
slices parallel to the axis of rotation. Each slice goes from the surface (denoted by
the latitude) to the equatorial planc.

where zonal averaging is denoted with the bar. Bevond the lowest order geostrophic
balance between the Coriolis terms in (4.20) as implied by (4.1), we find looking at
the numeric values that to the next order the leading terms are the eddy momentum

flux divergence and the viscous flux so that
S | s e
—2Q sin v, + 2Q cos 6w, + =V - (p‘u,'u') ~ vV (4.21)
P

where we denote with the subscript the next order component. Since the variations
along the axis of rotation are small, then when looking on the equatorial plane (the
cquatorial line in the zonally averaged picture) the leading order balance is

10

;) E (pu‘,l_u’l) ~

i02 (I'Qﬁ)
T4 Ot

where in fact only the higher order viscosity derivatives are significant. In Figure 4.7
we show both components of the momentum flux divergence for a section along the

equator. It shows that the momentum flux divergence is dominated by the radial

fluxes. The momentum fluxes are outward and big in a localized region. This mo-
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Figure 4.7: The radial and latitudinal (dashed) contributions to the zonal momentum
flux divergence as function of radius at the equator.

mentum transfer is the basis for understanding the circulation of the model and the
formation of the equatorial superrotation. We discuss this further in section 5.1.

It is convenient to rewrite equation (4.20) in terms of the angular momentum
M = Qr’cos®d + urcos (4.23)

so that

oM — — P
= +2V - (puM) + 2V - (pu'M') = vV*M (4.24)

where we have split the angular momentum into a perturbation and a zonal mean.
Integrating this equation multiplied by the mean density over a volume contained
by the exterior surface and a constant angular momentum surface (which is nearly
parallel to the axis of rotation because of the dominance of the first term in M), will

causc the contribution from the mean fluxes to vanish since
/ V. (pail) dv = / V- {adV = 0.

Therefore in steady state friction is necessary to balance the angular momentum eddy
fluxes. This also shows that, for the 2D case, no mean zonal circulation can form.
For the 3D case only eddy angular momentum fluxes can carry angular momentum
cross mean angular momentum contours (although locally mean fluxes can do so as

well). Considering the meridional plane streamfunction shown in Figure 3.4 the fact
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Figure 4.8: Angular momentum (left) and heat (right) mean (red) and eddy (bluc)
fluxes in a meridional cross section.

that the zonallv averaged (or 2D) meridional circulation is confined to narrow bands
along the axis of rotation is related to the fact that the mean circulation can not
cross angular momentum contours which are parallel to the axis of rotation. The
width of these bands will be related therefore to the magnitude of the viscosity, and
we expect that in the limit of small Ekman number these convective mean meridional
circulation bands will become narrower. Comparing the angular momentum mean
fluxes (without the solid body component of M), to the angular momentum eddy
fluxes in Figure 4.8, we find that while the mean fluxes transfer angular momentum
mainly parallel to the mean angular momentum contours, the eddy fluxes transport
the angular momentum across mean angular momentum contours to low latitudes.
This mechanism is most prominent in the region outside the tangent cylinder where
the large scale columnar structures interact with the mean shear. This transfer of
angular momentum through the turbulent fluxes to the equatorial outer regions of
the planct drives the equatorial surface superrotation. We discuss this mechanism in
chapter 5.

The right hand panel shows the equivalent eddy heat and mean heat fluxes. As

opposed to the angular momentum, there are strong heat fluxes also in high latitudes.
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Figure 4.9: The zonal (blue), meridional (red) and vertical (green) zonally averaged
surface velocities for a run with parameters: Ra = 1E7, Ek = 1.5F —4 and Pr = 10.
The dashed line is the normalized mean angular momentum.

This transfer of heat mainly parallel to the rotation axis moves heat from lower to
higher latitudes (a section parallel to the rotation axis outcrops in a higher latitude in
the upper boundary than in the lower boundary). This results in heating of the polar
regions. We hypothesize that this mechanism of heat transport to higher latitudes by
internal mean heat fluxes parallel to the axis of rotation can balance the solar heating
resulting in the observed flat emission on Jupiter and Saturn. Figure 4.9 shows the
zonally averaged surface velocities and normalized mean angular momentum. At low
latitudes we find a Hadley cell (weaker than the zonal flow) which is driven by the
equatorial upwelling seen in Figure 4.8. Exterior to the tangent cylinder containing
the eddy angular momentum flux convergence we find an inverse meridional cell (sur-
face flow away from the pole), which is a surface return flow driven by the poleward
heat flux. The latitude where eddy angular momentum fluxes are zero, meaning that
the mean surface zonal velocity is zero, is also where the meridional surface flow van-
ishes due to the relation between the meridional velocity and the eddy flux divergence
(4.21).

4.5 The Effect of Rotation

We have scen that for the parameter regime of Jupiter and Saturn Rossby numbers arce

small and therefore rotation is important in the basic balances. In the 2D Boussinesq
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Figure 4.10: The ratio ‘(\2,7” and the value of | N?| as a function of the rotation period.
runs we have shown that the ratio of % i1s an important measurce for characterizing

the flow. For the anelastic case due to having a mean state with a density gradient
the buovancy frequency is defined in terms of entropy. We show this by differentiating

the lincar non-rotating case of equation (2.26) in time, which gives

Pw S IT P
e Py - oD

where we have used relation (2.28) as well. Therefore for the anclastic system the
cquivalent to the traditional Brunt-Vaisala frequency is
5.1 AT
NZ — ,O_S(E
dr Or
Since in (2.26) the temperature gradient replaced gravity, and we have shown that
entropy rather then density is the natural variable for buovancy in the anelastic sys-
tem, then this buovancy frequency is the natural outcome. For the convective system
however this value becomes negative. In the 2D system convection was concentrated
in specific regions and therefore for most cases the mean N? when averaged over the

whole domain was still positive, however for the 3D experiments shown here the mean

N? is negative. Still, the absolute value (although not a buovancy frequency) gives
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Figure 4.11: The nondimensional number y = ( e ) as function of the rotation
period and the mean zonal velocity at the surface averaged around the equator as
function of the rotation period for a set of experiments with equal parameters but
varying rotation period Ra = 3E6, Pr = 10.

a good measure for the intensity of the convection. In Figure 4.10 we show a set of
experiments where we vary the rotation period for a given model configuration. We

find that the valuc of |NV?| grows (even though the Rayleigh number is kept constant)

2 . .
IIS\IT'-’! decreases as the rotation period grows, and to

Q
|N2]|
> 1 the flow is aligned with the rotation axis.

with faster rotation period, but

X

a reasonable approximation when
02

[N2|
As discussed in section 3.1.1 a similar measure which is better defined in terms of

is less than one the flow is no longer aligned
with the rotation axis. When

convection and uses the nondimensional parameters of our system is

Ta - Pr

i = 7

In Figure 4.11 we plot this paramcter as function of the rotation period. For the

As
scen in previous sections for the rotation period of Jupiter and Saturn the velocities

set of parameters of this experiments at a rotation period of 85 hours y = 1 .
are aligned with the rotation axis characterized by strong superrotation around the

equator. On the same plot we show also the mean surface zonal velocity around the

equator for these runs. We find that at about 50 hours the velocity changes from being

102



positive (castward velocity) to negative. The numerical experiments with fast rotation
period all have very similar velocity profiles, characterized by strong superrotation at
the equator. Bevond a rotation period of 50 hours though, the nature of the dynamics
changes quite rapidly and the zonal mean develops large closed circulations in the r-6
plane with no alignment with the rotation axis. This is similar to what we have
shown for the 2D case (Figure 3.2), however this circulation is also accompanied with
subrotation at the equator. In Figure 4.12 we show the zonally averaged velocity for
two cxamples out of this set of runs, one with the rotation period of Jupiter (9.92
hours). and the second with a rotation period of 80 hours. We find one of these
two states to appear for the whole range of experiments presented in Figures 4.10

and 4.11. The transition between the two states at a rotation period of 50 hours is

2
N2

averaging N? we are approximating the mean buoyancy in the whole domain this is

very rapid. The estimate for this transition based on is at 30 hours, but since by
estimate seems within the reasonable error. The estimate based on the limit y = 1is

at 85 hours.

4.6 Properties in the Zonally Asymmetric Circula-
tion

So far we have looked at the zonally averaged fields in the 3D model. The differences
between the 2D and the 3D flow indicate that zonal asymmetries are important for
the 3D circulation. We have scen that eddy momentum fluxes carry momentum away
from the axis of rotation to the outer equatorial part. Next we look at the zonal

structure of the circulation.

4.6.1 Formation of Columnar Convection

Looking at the equatorial plane the most prominent feature bevond the strong pro-
grade velocities near the upper boundary and the retrograde velocities near the inner
boundary are large positively rotating (in respect to the rotation of the planct) eddies
in the interior. Busse (1976) has suggested that Taylor columns can form around a
hot convective interior and the interaction of the columns can drive the jets in the
atmosphere. Zhang and Schubert (1996) have shown formation of convection cells in a

Boussinesq 3D model for Rayleigh-Benard type convection. Here we use the anelastic
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Figure 4.12: The effect of rotation: Velocity fields for a fast and slow rotating planet.
(left) rotation period of 9.92 hours; (right) rotation period of 80 hours; In color are
the zonal mean zonal velocities where red is castward, and the arrows are the zonally
averaged radial and meridional velocities.
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Figure 4.13: The 2D streamfunction on slices oriented toward the center of the planet
(radius-longitude surfaces), showing the formation of Columns which are driven by
the convection. Plus signs are located at an cqual distance from the rotation axis in
all panels, and located within one of the columns. showing that these columns are
parallel to the axis of rotation.

model to show the formation of such columnar structures that extend almost from
one boundary to the other crossing the equatorial plane at about 2/3 the planctary
radius. In Figure 4.13 we show the 2D streamfunction on slices along the longitude-
radius planes on constant latitude surfaces (so that the surfaces are not parallel).
The slices are spread apart in 5° in latitude going northward. The closed structures
on the equatorial plane (upper left panel) extend out in radius as they move out in
latitude so that they are parallel to the rotation axis. To demonstrate this we have
marked the center of one of the columns on the equatorial plane with a plus sign, and
the plus signs on the other planes have an equal distance to the rotation axis, and
the same longitudinal angle. We find these columnar features to be a robust feature

in all numerical experiments.




4.7 Scaling Estimates for the Vertical Profile of the
Zonal Wind

We try to estimate the scale of the density gradients driven by the convection. This
is beneficial for understanding whether the representation of convection in our model
can be interpreted in terms of simple scaling arguments; also by estimating the den-
sity gradients, we hope to have an estimate for the zonal velocity vertical shear. It is
important to distinguish between the density gradients from the convective plumes,
and the larger scale geostrophically balanced density gradients. We begin by estimat-
ing the amplitude of the velocities driven by the convection and comparing them to
the corresponding velocities obtained by our numerical model. Following Fernando
et al. (1991), and Ingersoll and Pollard (1982) we estimate the mean heat flux carried

by convection as
F = pCu' AT, (4.25)

where p is the mean density, C, is the specific heat (which we can calculate from
the EOS properties (Kippenhahn and Weigert, 1990), and is a function of depth),
AT is the temperature across the plumes and w’ is the convectively driven vertical
velocity. Due to the rotation we can relate the production of vorticity and the buoy-
ancy anomaly via the vertical momentum balance which gives a balance between the
Coriolis force and the buovancy so that

vgAT
i = S (4.26)

p

Now we can write an expression for the correlation of these two velocities as a function

of the thermodynamic variables and the heat flux so that

agl
pC, QY

w = (4.27)
All variables on the right hand side of (4.27) are given by the EOS and the reference
state of the model. The flux can be inferred from the prescribed radial heating profile.
The forcing as applied to the model assumes the vertical profile is close to adiabatic

and that the planet is cooling on very long time scales. The forcing is applied to the
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Figure 4.14: «/w" estimated from scaling arguments and the rms from the model. The
plot has the model output for «" and w' separately where w' is bounded to zero at
the upper boundary while «' has a slip condition, and the combined (u'w")

heat budget as a heat source () given by

ot

4

=N

(ps'w’) =

Nl &3

== (4.28)
por

which when integrated over the volume is zero. Therefore we can calculate the effec-
tive flux (F) at each depth from the heating by

if "D .
F= - %‘rzdr + F,
re

(4.29)
where Fy is zero since the flux at the bottom is zero. Comparing the right hand
side term in (4.27) shows a good agreement with the eddyv rms velocities given by
the model, this is shown in Figure 4.14. This means that our convectively driven
velocities are on average well approximated by these arguments, even though the
convective velocities themselves are stronger than what we expect on Jupiter because
the heat flux prescribed to the model is stronger than the heat flux we expect to find
on Jupiter.

A common feature of numerical models is that the forcing (in terms of heat flux)
must exceed in orders of magnitude what we believe exists in the interiors of the

giant plancts (which is on the order of 1(),% on Jupiter (Hanel et al., 1981), and
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even less on Saturn (Hanel et al., 1983)). The reason for this over-forcing is that
due to numerical grid size limitations the turbulent viscosities and diffusivities used
in numerical models averages the turbulence in a grid box rather than represent the
molecular value, and therefore the Ekman numbers are orders of magnitude too large.
This means that to reach flux Rayleigh numbers which exceed critical and are as tur-
bulent as numerics allows, the large viscosities and diffusivities must be compensated
by cffectively large fluxes exceeding the values we believe exist on the giant plancts.
In fact, even when over-prescribing the fluxes, the Rayleigh numbers are many order
of magnitude smaller the expected planctary ones. Therefore these numerical models
should be thought of only in terms of the nondimensional parameters and not in terms
of the actual heat fluxes, viscositics, diffusivitics ete. Nevertheless, our objective is to
infer from these models actual characteristics of the planet and overforcing the heat
flux is a problem we should address. Therefore we present our numerical results for a
range of Rayleigh numbers in order to show the dependence on the forcing, still being
away from real planet values which will require molecular size grid not achievable
with current computational abilities.

The result in Figure 4.14 shows that even though we are overforcing the system the
scaling arguments still hold, resulting in higher turbulent velocities than we believe
exist in the interior of the planet. However since the model mean velocities (not
convective) are of the right order of magnitude and for small Rossby numbers are
geostrophically balanced, the mean densities are well represented. Bridging this gap
between the overforcing and the resulting scales is a major challenge of numerical
modeling in convective systems.

Away from the boundaries we see in Figure 4.14 that the rms zonal and vertical
anomaly velocities are of the same order. Due to the slip boundary condition they
differ along the boundaries. Therefore for the interior if we assume that u' ~ w', we
can get an estimate for the convective density gradients by using (4.26) and (4.27) so
that

-

Ap = (w) (4.30)
9C}

This gives an estimate to the turbulent density anomalies, and therefore an upper
limit to the steady state geostrophically balanced density gradients. Relating the

convective density anomalies to the mean geostrophic ones is the main leap of this
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Figure 4.15: Dashed lines are the approximation for tyvpical zonal velocities from
(4.33) for 4 bar (blue) and 10 Mbar (red) as a function of Rayleigh number. Dots are
the corresponding mean rms zonal velocity values from the numerical model.

approximation and therefore we treat this as an upper limit. Now we use this scale
of the mean density gradients to estimate the geostrophic velocities and shears.

In the numerical results presented in the previous section we showed that for
Jupiter and Saturn tvpe parameters the Rossby number is small, and there are two
different length scales in the problem. One scale is the planctary scale and we take
this to be the scale of the planet denoted by R. The second scale is the scale of the
large colummar cells (driven by convection but are larger than the convective length
scales), which we denote as L. The vorticity of these columns can be produced in two
ways: one is the by stretching the columns and then the rate of vorticity generation
is given by

u 2Qu

where u is the scale of the mean velocity, and 7 is a time scale. The second way of




producing vorticity is by the curl of the buoyvancy force (4.9) which can be scaled as

u gAp 1 (gaFQ :
= < 4.32
Lt pL L ( )

7C,

where we have used the upper limit for the density gradients as given by (4.30).
We assume that for the large scale motions the relevant time scale is the advective
time scale 7 = £ (alternatively one can assume the time scale is &,

back an equivalent to (4.27) as an upper limit, because assuming the upper limit in

this would give

(4.32)). Plugging the advective time scale in the equations for production of vorticity

(4.31,4.32) gives a scale for the mean zonal velocity as function of the thermodynamic

1

Ran)5
g = e . (4.33
( pCy )

The values given by this expression give a good order of magnitude estimate to the

properties and the forcing

velocities given by the model. The question is can we infer from this, the velocities
on the real planct with planctary type fluxes? First we note that comparing (4.33)
for the atmosphere at 1 bar to the interior at 1Mbar the density increases by 4 orders
of magnitude and the thermal expansivity will decrease by 3 orders so we can expect
the interior velocitices to be substantially smaller than the atmosphere ones. In Figure
4.15 we compare the rms velocities at 4 bar and 10 Mbar in our model to the velocities
inferred from (4.33) for different Rayleigh numbers. We keep the viscosity constant
so the change in the Rayleigh numbers reflects the change in flux. The scaling seems
to be robust for a range of Rayleigh numbers for the interior values, while for the
atmosphere (though still giving right orders of magnitude) the scaling gives less than
model values (a problem for the atmosphere scaling is that the effective forcing for
the uppermost level is zero (4.29) so we must look at a few levels below and therefore
we look at the 4 bar level and not the 1 bar level which is the upper most level of
the model) . Applying Jupiter values of F = 102, o = 10725 , R = 7TETm,
=131 KS'J’KQ, and p = 0.1 £¢ for the atmosphere, and F =10 % o = 107? el

P 141 %-;l for the interior, we find velocities on the orders of 50m/s at the 1 bar

level and 0.03m/s for the interior. This shows a significant change in zonal velocities
between the atmosphere and the interior. To further examine the vertical profile and

to address the issuc of the over forcing, we look at zonal velocity profiles along sections
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Figure 4.16: Zonally averaged zonal velocity (ms™!') along slices parallel to the axis of
rotation. Each slice goes from the surface (denoted by the latitude) to the equatorial
plane. Similar velocity profiles are shown for four experiments with different Rayleigh
numbers of 1E7, 5E6, 3E6 and 1E6, other parameters in these runs are £k = 1.5F 4
and Pr = 10. The velocity is scaled by Rayleigh number to show the similar profiles.
The velocity values matches that of Ra = 1E7. Scaling to the velocity can be inferred
by Figure 4.15.

parallel to the rotation axis (denoted by the latitudes at which the sections cross the

top surface) in Figure 4.16. The sections are separated in 5 degrees in latitude. These

sections show a baroclinic structure of the velocity which has a latitudinal dependence
due mainly to the variation in density and thermal expansivity which have different
profiles along different sections. An important point regarding the overforcing is that
the profiles (which are normalized by the Rayleigh number ratio) do not depend on
Rayleigh number. This means that although the value of the velocity depends on
Rayleigh number the baroclinic profile does not, and therefore the result of weaker

zonal velocities in the interior is robust, and it roughly matches the scaling given

bv (4.33). Note that for a constant forcing and thermal expansivity, the vertical
profile of velocity will go inversely with p%, a state in between the barotropic limit
and momentum column limit presented in section 4.3.1. All this suggests that with
a strong vertical variation in density, the velocity can vary substantially from the
atmosphere down to the interior. This is demonstrated well when comparing the

anclastic to Boussinesq models in Figure 4.5.
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Chapter 5

Weakly Nonlinear Analysis of

Column Formation and Superrotation

In this chapter we focus on the mechanisms leading to the dyvnamics seen in the
fully turbulent model presented in chapter 3. We have shown formation of equatorial
superrotation, rotating cvclonic columns parallel to the rotation axis and a strong
shear in the vertical structure of the wind. We have seen that upgradient angular
momentum ceddy fluxes drive angular momentum perpendicular to the axis of rotation
and contribute to the superrotation. However, we have not answered the question of
why are the fluxes pointed in that direction? why do we find only cyvelonic convection
columns? why do the columns propagate? and what sets the number of columns
around the sphere? In this chapter we answer these questions.

In this analysis we use the full GCM., a simplified analytical model and a simplified
single layer tvpe numerical model. We look at the GCM in a parameter regime where
convection is weak, and allows us to examine the dynamics while nonlinear effects
arc small. We can then understand the preference for positive shear and prograde
rotation and show the transition from a state with weak cvclones and anticyelones on
the equatorial plane to one dominated by only cvelones. Then in section 5.2 we look
at a simplificd model of a single column (Ingersoll and Pollard, 1982) parallel to the
axis of rotation and show how a Rossby wave tvpe mechanism explains the direction of
propagation and the number of columns. In section 5.3 we present another simplified

model of a shallow water annulus and show how this model demonstrates some of the

dvnamics seen in the full GCM.




5.1 The Weakly Nonlinear Limit

We begin with looking at the 3D model results in the limit of small Rayleigh and
Prandtl numbers. We find that in this limit the solution initially looks like lincar
solutions to the problem of convection in a rotating sphere as shown by Zhang (1992)
and Zhang and Schubert (1997), and then goes to a state which is qualitatively similar
to the one we see in the fully turbulent experiment shown in chapter 3. In the new
state the flow has only columnar cyclones rotating around the equatorial plane. This
weakly nonlincar solution allows us to understand the physical mechanism seen in the
fully turbulent cases. Figure 5.1 shows snapshots of the equatorial streamfunction (see
definition in section 3.3) as it evolves in time beginning from spin-up. and reveals two
very distinct regimes.

The first regime, while the velocities are small (we begin with zero velocity), is
a series of equally spaced cyclonic and anticyvclonic vortices on the equatorial plane.
They propagate castward and spiral radially (sce Figure 5.1). In section 5.2 we discuss
the Rossby wave type mechanism causing the eastward propagation. The spiraling
of the phasec lines is due to a larger planctary vorticity gradient in the outer region.
We discuss and demonstrate this in section 5.3. Initially since the velocities are small
the nonlinear contributions to the dynamics are weak, providing an equivalent linear
solution. Several authors (Zhang and Busse, 1987; Busse, 1994; Zhang and Schubert,
1997) have looked at the lincar problem of convection in a spherical rotating shell.
Zhang and Schubert (1997) solve the linear problem for a Boussinesq fluid where the
flow is driven by an internal heating profile. The solutions they find for the velocities
and the temperature fields are given as an analytic expression in terms of spherical
harmonic Legendre polynomials and spherical Bessel functions. These solutions look
very similar to our solution in this first regime. Therefore as long as the perturbation
is small and the flow is close to linear our solutions match previous linear analysis.

The system is constantly driven by the convection and therefore in time (while the
effect of dissipation is small), the velocities become larger. As they become stronger
due to the tilt in the direction of the convection columns as given by the linear solution
(there is a correlation between the direction of zonal and radial velocities) angular
momentum is fluxed to the outer parts of the sphere creating a vertical shear. As the
shear becomes stronger, with castward zonal velocity towards the outer boundary and

westward flow towards the inner boundary, the anticyclones can not survive against
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Figure 5.1: The Weakly nonlinear run: Ra = 1.5E5, Ek = 4E — 4, Pr = 0.5. (top)
Snapshots of the equatorial streamfunction in time, red is cvelonic rotation and blue
is anticvclonic rotation. (bottom) The maximum of the equatorial streamfunction in

time.
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Figure 5.2: The eddy momentum flux divergence and the viscous terms at time
t =100 (corresponding to Figure 5.1).

the shear and only the cyclones survive. Then the system goes into the second regime
which can be seen in Figure 5.1. The cyclones continue to propagate castward with

nearly the same phase velocity as before (see Figure 5.8).

Figure 5.3: The contribution to the eddy momentum flux divergence and the viscous
term from fluxes perpendicular to the axis of rotation at time ¢ = 100 (corresponding
to Figure 5.1 and to Figure 5.2).

In this second, weakly nonlincar, regime the amplitude of the flow oscillates until
the nonlinearities act to bring the flow to a stable state. This behavior is similar
to the behavior we have found in our quasigeostrophic two layer model (chapter
7), where once the nonlinear contributions become significant the solution oscillates
around a stable state due to the eddy-mean flow interactions (see analysis in section
7.4). In contrast to the quasigeostrophic inviscid model here viscosity also plays a
role in inhibiting the growth, and the balance is between the eddy fluxes transferring

momentum to the outside to the viscous fluxes which flux momentum inward. Figure
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Figure 5.4: The evolution of the u’ field in the weakly nonlinear run. top: snapshots
of the ' field on the equatorial plane during the lincar (left) and weakly nonlincar
(right) stages; bottom: the evolution of the maximum of the 7 and «' components of
the zonal velocity in time. The radial dependence of u is shown in Figure 5.5.

2 shows the vertical and meridional contributions to the eddy flux divergence and
the viscous terms, which after the instability are close to balance. During the growth
stage the viscous contribution is small and the eddy fluxes contribute to the growth of
the mean zonal velocity "J Figure 5.3 shows contributions of the eddy flux divergence
and the viscous terms, fr()m fluxes acting in the direction perpendicular to the axes
of rotation.

It is uscful to look at the zonal velocity during this instability and transition
between the linear and nonlinear regimes. We divide the zonal velocity into two

parts, the zonal mean and the part not containing the zonal mean so that
u = u(r,0)+u (r,0,0). (5.1)

Figure 5.4 (bottom) shows that the growth of «', and with it the outward flux of
angular momentum, precedes the growth in u. Therefore it is the flux of angular
momentum outward which contributes to the development of the mean zonal velocity
u. The amplitude of the mean velocity always follows the behavior of the zonally

aarving component meaning that the outward flux of angular momentum is causing
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the development of the zonally averaged component and consequentially the shear.
Once the shear is developed the anticyclonic spiraling vortices which were part of
the lincar solution disappear and only vortices in the direction of the shear survive.
These cyclones are still tilt eastward being in balance between the eddy and the
viscous fluxes. Figure 5.4 (top) shows the structure of «’ both during the linear stage
and the nonlinear stage, and in both cases the structure is similar (only with different
amplitudes and a overlaying lower mode in the initial stage) and again consistent
with the lincar calculations of Zhang and Schubert (1997). The radial structure of
the shear is shown in Figure 5.5 for the stage after the weakly nonlinecar system has
reached equilibrium. As seen in Figure 5.4 in earlier stages the zonal mean velocity
oscillates around this state until reaching the shear which is in balance with the eddy
and viscous fluxes.

The structure along the direction of the axis of rotation is consistent with the
structure seen in the fully turbulent case (Figure 4.13). The Taylor-Proudman con-
straint (with the anclastic adjustments - section 4.3), allows small variation in the
direction of the axis of rotation and therefore both the initial anticyvclones and cy-
clones, and the later stronger cvelones extend through the planet forming columns.
Figure 5.6 shows the streamfunction on conic surfaces at different latitudinal angles
for the weakly nonlinecar regime at the stage after the instability. The conic surfaces
vary in intervals of 10° in latitude, showing how the cyclones move outward in lat-
itude such that the cyclones are always in equal distance from the axis of rotation,
and therefore are perpendicular to the equatorial plane, forming columns.

In this section we have explained the mechanism leading to the superrotation
through the flux of angular momentum and the transition of the linear modes. This
weakly nonlincar regime allowed us to connect the lincar solution as shown analytically
by Zhang and Schubert (1997) to the full nonlinear solution we see in the GCM. In
the more turbulent cases the modes are not distinct but the general structure with
the cyclones on the equatorial plane and columns extending throughout the planet
persists. Another question raised by the turbulent model was the mechanism driving
the waves seen on the surface of the planet. These waves seen in Figure 5.7 are
cmbedded within the mean equatorial superrotation and have phase lines which are
tilted eastward in both north and south hemisphere with a maximum at the equator.
The weakly nonlinear model explains this feature, since superimposed on the mean

zonal flow (Figure 5.5), there is a contribution to the zonal velocity from the o’
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Figure 5.5: The zonal mean component of the zonal velocity on the equatorial plane
after the velocity has reached quasi-steady state (¢ = 140) in Figure 5.4.

component (which is not necessarily weak) and associated with columns. Due to the
spherical geometry of the surface, and the eastward tilt in the columns, the surface
zonal velocity resulting from the columns at the equator (u' in Figure 5.4) would
be more castward than the zonal velocity (w') at the outcrop of the same column.
Therefore the phase line of the column extended to the surface of the sphere has
an appearance of a wave with an eastward bend in its phase line. In the turbulent
model there are no distinct phase lines but since the columns appear in a turbulent
form in the interior, their «' component is manifested to the surface with the wave
structure appearance. As mentioned in chapter 1. waves with a similar appearance
with curved phase line embedded in the superrotation have been observed on Jupiter.
These waves had a smaller latitudinal extent but as we will show in section 6.1 the
latitudinal extent is affected by the vertical extent of the model. Therefore we propose
that this might be a plausible mechanism for the waves although the wavelength of the
observed waves is less than the resolution of our model. Note that for high Rayvleigh
number experiments these phase lines become less apparent. In addition since o' is
strongest radially (ignoring the anelastic effect for this argument) towards the center
of the column, then the u' component is strongest at the outcrop of the columns to
the surface, giving the appearance of stronger jets at mid latitudes. Both weakly
nonlincar and fully turbulent surface zonal velocities can be seen in Figure 5.7.

The existence of the waves in the fully nonlinear case shows that the same general
mechanism exists in the fully turbulent (higher Reynolds number and/or lower Ek-

man number) cases. In chapter 6 we discuss the sensitivity to these parameters and
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Figure 5.6: The 2D streamfunction on conic surfaces of constant latitudinal angle.
Snapshots correspond to ¢t = 140 days in Figure 5.1 and show that the cvclones seen
in the equatorial plane are cyclonic columns extending through the sphere.
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Figure 5.7: Waves embedded in the equatorial surface zonal velocity (m/s) for the
weakly nonlincar case (Ra =, Ek =, Pr = 10), and a fully turbulent case (Ra =
3E6, Bk =,1.8E -~ 5Pr = 10).

show that for lower Ekman numbers the flow develops more columns and therefore
the equatorial superrotation appears smoother. We find also that, when going from
a 2° resolution run to a 1° resolution run, the latitudinal extent of the equatorial
superrotation is reduced. We emphasize that the waves that appear on the surface
arc superimposed on an castward zonal mean velocity.

We have explained therefore the mechanism for the equatorial superrotation based
on the weakly nonlincar runs. This mechanism however relies on the tilting of the
columns for the outward flux of angular momentum. and indirectly on the propagation
of the perturbation castward. In the next sections we discuss these processes in
more detail using different models. We begin with a simple model to understand the

mechanism for the eastward propagation of the columns.

5.2 Single Column Barotropic Model

In order to understand the dynamics of the columns we see in the turbulent flow we
turn to a much simpler model. Since we have shown in chapter 4 that the interior is
close to barotropic, and the flow is aligned with the rotation axis. a natural system
in which to describe a single column model will be a barotropic system in cylindrical
coordinates. We follow a similar derivation done by Ingersoll and Pollard (1982)
where they have a scale separation between the scale of the columns and the size of
the domain. Rewriting (2.8 - 2.10) in cylindrical coordinates (which aligns with the

spherical svstem at € = 0 with replacing the meridional coordinate with z and noting
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that now p=p(r, z)) gives,

Du uw 10
— O S e 5.2
= " -5 (5.2)
Duv JP
Dt 0z (6:3)
Dw  u? oP
4y = =— 5.
Dt T r A or U

Note that we arc not using the traditional cylindrical coordinates, to be consistent
with our previous notation, so that u is the azimuthal velocity, w is the radial velocity
and only v is redefined as v = %% (but locally on the equatorial plane coincides with
the spherical form so that dv = rdf). In this system the Coriolis terms parallel to
the rotation axis vanish and we have used the anelastic potential as defined in (2.23).

The mass equation 2.5 gives

p(ou O(rw) ~dp 9 (pv)
: <8¢+ ar )“’ar* Bz

= 0. (5.5)

We scale time by the advective time scale, but where there is a length scale separation
between the local length L and the domain radius ry so that L <« r,. Then for a
small Rossby number to the highest order when cross differentiating (5.2) and (5.4),

subtracting them and adding (5.5) we get that

D [aw O(ru)] . 2Qr (7”@ p (')(/‘)1,»))
or

Di |36~ or > pp 0. (5.6)
The term is the square brackets is the vorticity, and the terms on the right are the
contributions to the vorticity from stretching and the variations in the mean density.
This expression therefore will describe the vorticity of a single column within the
sphere as shown in scction 5.1. This system resembles a quasigeostrophic system,
although (5.3) is different. Ingersoll and Pollard (1982) show this equivalence using
the ratio between ratio of cvlinder and the ratio of the sphere as the small parameter
in analogy to the Rossby number in QG.

At the limit of small Rossby number the quasigeostrophic equivalent scaling of
(5.3), and (5.4) will give to the highest order
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Figure 5.8: left: the relation ¢(k) from eq. (5.14), and the Hovmoller diagram from
the weakly nonlinear run with the phase speed of 517 superimposed.

so that the anelastic potential is the geostrophic streamfunction. We assume a ba-
sic state as shown in section 5.1 where the flow develops a basic state %(r) and a
perturbation which can be deseribed by a streamfunction (5.7)

$ = 200 (r z)e™eTh (5.8)

where £ is the zonal wave number and o is the frequency. Following (5.7) the velocities

therefore become

1y ..
u = u(r) — TV gikto—at) (5.9)
dr
ik "
w o= Dgpetk@at) (5.10)
-
) = C(;)(’ik((p_”t), (511)

Then to the highest order assuming the mean flow is larger then the perturbation,
(5.6) and (5.3) become

> 10 ( oy k2 200p 10 ([ Ou 2527-0(ﬁ<g- _

U —c il et . L — Al e O R R N e /y p— —_— 9. 2

=g [1' ar (’ 8/') /'29] + [ pdr TOr (I ()I)] L p 0z Rl2)
(@—c) k¢ = aa—l; (5.13)

We turn now to our numerical simulations where we have seen that on the equatorial

planc the meridional variations in the streamfunction are small (Figures 3.9, and
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4.13), and thercfore to make this system separable we assume that the right hand
side terms containing the variation in the meridional direction are negligible. From
(5.13) this is similar to assuming the zonal wavelength is small compared to the
radial wavelength, which leads to having the streamfunction ¢ independent on z so
that v» = ¢ (r) only. Thus the flow on the equatorial plane can be described as a 2D
streamfunction. We have therefore set an eigenvalue problem which can be solved to
find the phase speed. The phase speed will describe the propagation of the columns
on the equatorial plane which we have seen in the previous section. Alternatively, we
can do a local estimate for the phase speed by using the local numeric values we have
for the shear and streamfunction at the radial location of the columns. We then get

a local estimate for the phase speed as function of the zonal wavenumber

20 9p o / = : 8v 2y
0% 12 (rE)|,,| Wl + 7, |22 (P5E) I — S0l ]

e Lo (.00 K2 )
T or (,—) |"'c =S 7_—’(‘4‘|7(
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where r. denotes the radial location of the maximum of the zonally averaged equa-
torial streamfunction (the radial location of the columns). In Figure 5.8 we show
c(k) for the weakly nonlinear run presented in section 5.1 calculated in this method.
We find that this gives an inverse relation between the zonal wavenumber (number
of columns), and the phase speed. Figure 5.8 shows a Hovmoller diagram of the
cquatorial streamfunction around the radial distance of the columns. We sce that the
columns propagate eastward at a phase speed of 51m/s. Using this value in Figure
5.8 corresponds to a wave number of k£ = 28 . The number of columns in the model
is 18 however given the rough approximation of this model (mostly assuming inviscid
dynamics) it might be a right ball-park number. More importantly, (5.12) predicts an
castward propagation of the columns. It is important to note the similarity between
(5.12) and the barotropic stability equation on a beta plane (e.g. Pedlosky, 1987),
where the term of the radial derivative of the mean density acts as the cffective 3.
Multiplying (5.12) by p, and integrating in the z direction (assuming as discussed
above that the streamfunction is independent of z) between the places the columns

intersect with the surrounding sphere denoted by —h and £ gives

- 10 ( oY i 18 ¢ 6B}] . s
(w—rc) [75 (15) 3 ] 4 [B . (TE>] @ = 0 (5.15)
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Figure 5.9: The effective 3 B(r) (5.16) as a function of radius for both Anelastic and
Boussinesq cases.

where

2Q d M

and

Bir

h-
M = //_)(lh.
—h

B(r) therefore is the cffective 3, and is a function of the radial distance in the sphere.

—_

ot
~
—

For a Boussinesq fluid M would simply grow as r becomes smaller due to the spherical
boundaries of the sphere. In the anelastic case M will have a more complex behavior
due to the effect of the boundaries, and the radial dependence of p itself. This is

demonstrated in Figure 5.9. In both cases since 44§

5 is negative the cffective 8 in the
interior of a sphere would then be negative. Ingersoll and Pollard (1982) use this

expression do derive an alternative barotropic stability eriterion which we come back
to in chapter 7.

To understand the effect of the negative beta intuitively, one can think about the
stretching of a column of fluid as it is moved closer to the axis of rotation. While
in the standard spherical shell such a column will shrink in length as it is moving

poleward, a column in the interior will stretch. In the thin spherical shell, this effect
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Figure 5.10: Left: The relation ¢(k) for the fully turbulent run (moderate Rayleigh
number as in Figures 3.9-3.11 Ra = 3E6, Ek = 1.5E — 4, Pr = 10); right: the
corresponding Hovmoller diagram with the phase velocity of ¢ = 120" superimposed
with the black line.

is equivalent to a positive planetary vorticity gradient (which in terms of conservation
of potential vorticity is equivalent to a bottom slope growing towards the pole in a
shallow system). In the deep system the stretching of the columns is equivalent to
having a negative planctary vorticity gradient towards the poles. Here therefore, we
can think about the cffect of B(r) as the background planctary vorticity only with
the opposite effect to that of a thin spherical shell. Similarly, a Rossby wave will
propagate in the opposite direction. If we go back to Figure 5.1 the set of positive
and negative perturbations feels the effect of the planctary vorticity gradient and
by conserving potential vorticity on the equatorial plane propagate castward. The
mechanism is similar to that of a Rossby wave except that instead of polar movement
causing negative relative vorticity, motion toward the center of the planet (poleward)
causcs positive relative vorticity and positive phase speed. In chapter 7 we look how
baroclinic instability changes in the presence of a negative 3. Figure 5.10 is similar to
Figure 5.8 only for a more turbulent case. Again we find that the phase speed of the
propagation of the columns is close to the values predicted by (5.14) for the number
of columns we find in the numerical model.

We have explained the eastward propagation of the columns and shown an estimate
for the number of columns that form. However the mechanism described in section
5.1 would not work if there was no flux of momentum as the columns propagate.
Therefore we now turn to another model - 'the annulus model’” to understand the

reason for this flux, and preference for only c¢yclonic rotating columns.
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Figure 5.11: Mapping the square (0,27) to the annulus grid. (left) M = 4,1 = 1,
(middle) M = 8,19 =2, (right) M =1,79 =1

5.3 The Annulus Model

An important aspect of the process leading to the superrotation which was discussed
in the previous sections was the lux of momentum to the outer parts of the sphere due
to the spiraling in the linear modes. In this section we use another simplified model to
study this process. In order to represent the spherical geometry in a simple channel
model. we use a barotropic model with varving height. and use a conformal mapping
to map this channel to an annular surface (Mehta, 1998). By this we can represent
the beta effect with the variation in the model height (a deeper interior represents
a negative planctary vorticity gradient and visa versa). Using a lincar slope will
approximate a constant beta, a convex slope will have a bigger values of beta towards
the outside and a concave slope will have the opposite effect. The mapping of the
channel to the annulus gives the proper metric of the sphere’s equatorial plane. The
model assumes conservation of potential vorticity and the height weighted velocity is
nondivergent.

We construct the annulus coordinates by using the following mapping,

= r(,(’% (5.18)
i

= —— 5.1¢

M Les

g = =, (5.20)

which relates the annulus coordinates (r,y,z) to cvlindrical coordinates (r.0, 7).

Figure 5.11 shows how the Cartesian square between 0 and 27 is mapped to the
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Figure 5.12: Snapshots from a run using the H(r) profile from the full spherical
model (equation (5.16) at radius 0.6 — 0.8). The flow forms vortices through an
inverse cascade that propagate eastward.

annulus for different values of M and ry.

We solve the following system

Dyq
Dt
Melul} = 0

where ¢ = §IiI£ is the potential vorticity, H is the depth of the fluid, f is the Coriolis

number, ¢ is the relative vorticity, and the 2D streamfunction 1 is defined so that

uH = V x.

The streamfunction is therefore related to the vorticity by

1
¢ = V'EVUJ

We define U = uH so that (5.21), and (5.22) combine to give

or equivalently

dg 1 _

5 - EV fUg) = 0
oC B
a + V $ (Uq) = 0
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Next we calculate the scale factors necessary to transform the Cartesian channel
model to the annulus coordinate system. Inverting equations (5.18 - 5.20), and defin-
ing a Cartesian system (&, 1,¢) gives the following transformation from a Cartesian

grid to an annular one

2 2
g ij/hl<§;§ﬂ—) (5.27)
2 ro
g = ;Utunl(ﬁ) (5.28)
£
= (5.29)

so that the Jacobian giving the arca scaling factor from the Cartesian to the annular

system is

= —, (5.30)

Therefore this will be the factor scaling the Jacobian term in equation (5.26), when

transforming the Cartesian system to the annular one. Similarly using (5.24) both
. ; ; i ST18

the divergence and the gradient operator contribute a factor TI so that the vorticity

cquation with the transformation factors becomes

M2OC M2

— + —V-(Uq) = 0, 5.31
T T oY My , (5.31)
and the potential vorticity is
M2 4
1 2 L» + ./ -
Sy e 5:32
q 7 (5.32)

Therefore we can calculate the change in vorticity by solving for the potential vorticity
flux. The scaling factor will come only in the potential vorticity.

The profile of H(r) would therefore control the nature of the dynamics on the
annulus plane. The case that would represent our full numerical model would be
to take the H profile given by (5.16). In Figure 5.12 we show the resulting flow
when beginning from an initial high modal perturbation, and a zero mean vorticity.
Due to the negative beta effect the flow develops a eastward propagation. Opposed

to the convective model, since the model is not continuously forced by small scale
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Figure 5.13: Hovmoller diagrams of the perturbation potential vorticity for cases of a
positive and negative linear slope in H(r). The positive slope (shallow fluid at smaller
radius - positive 3) develops westward propagation, and the case that simulates a deep
sphere (deeper fluid at smaller radius - negative ) propagates castward.

convection it develops an inverse energy cascade and forms large cyclonic vortices.
Note that the reason for the formation of these vortices is different from the columnar
vortices in the full model since there a mean shear develops due to the outward flux of
angular momentum. In Figure 5.13 we show Hovmoller plots from two experiments
with a lincar slope of H(r), where one slope is positive and the other is negative.
The Hovmoller plots show the opposite direction of propagation of the vortices in
both cases. Where the slope makes a shallower fluid in the interior of the annulus

(equivalent to positive beta) the vortices develop a westward propagation.

5.3.1 Solving for the Eigenmodes

We now turn to look to the rcason the modes scen in Figure 5.1 are spiraling. We
should make first a distinction between the convection model and the annulus model.
In the convection model energy is continuously fluxed outward, accelerating the su-
perrotation, and in stcady state dissipated by the viscosity. The annulus model on
the other hand evolves from a given initial condition, and modes are not growing.
Therefore when looking at the eigenmodes in the annulus model they will have a
finite and real phase speed. Then, the only way the eigenmodes can be complex, and

thus be tilted in respect to the radial direction, will be in the presence of friction.
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Figure 5.14: Eigenmodes for cases of linecar slope in H(r) and a curvature slope in
Hir).

Lincar models showing the spiraling in the lincar modes (Zhang and Schubert, 1997
g I g g
have also had finite Prandtl numbers.
We solve therefore for the same system presented in (5.21, 5.22) but add a constant

viscosity so that

— 4 U-NVg = »V. (5.33)

We solve now for the eigenmodes by assuming a solution for the vorticity of the form
¢ = &9y, (5.34)

where r and y are defined in (5.27. 5.28), £ is the azimuthal wave number and ¢ is

the phase speed. Plugging (5.34) in (5.33), and defining an operator M so that

1
¢ = V-zVe=My, (5.35)

gives an equation of the form

dqg : o1 8
;‘ =y (R _ L2 Bl iow ek, 2 = — :: )
[ ! 0{/ & ( ke + ()l/ H 0(/):| 0 CZg () 3())
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where z5 are the cigenvectors and ¢ is the cigenvalue. Therefore in the absence of
friction, and if the linear modes are not growing the eigenmodes will be real (only
depend on r) and there will be no tilting or spiraling of the z; ecigenmodes. However,
the presence of a finite viscosity still does not guarantee that the eigenmodes will be
spiraling.

We should separate the issue of tilting of the modes from the issue of ecastward
spiraling of the modes. First, in the convection model due to the outward flux of
cnergy, theoretically modes may develop a tilt (and therefore a correlation between
zonal and vertical velocity directions), because of the direction of energy propagation,
leading to an outward flux of angular momentum. However, in the lack of spiraling
(without considering boundary effects) this flux would be nondivergent and therefore
will not accelerate a zonal superrotating flow as demonstrated in (4.24). In the
convection model we find that due to the inherent radial variation of the planetary
vorticity, due to the sphericity, it is difficult to separate the issue of tilting from that
of spiraling (spiraling of the columns includes tilting). In the annulus model since
we have no convective flux, we can not separate these issues either since without
variation of planctary vorticity we do not develop neither spiraling nor tilting.

In order to see this in the annulus model, we show in Figure 5.14 the eigenmodes for
two cases of equal paramcters, but one with a lincar slope and one with a curved slope.
The linear slope is equivalent to a constant g, and the curved one is equivalent to a
arving 3. Only the curved one develops spiraling in the direction of the eigenmodes
in respect to the radial axis. Therefore the spiraling of the modes is related to the
radial variation of planctary vorticity.

A semi-analogous case (considering more the issue of tilting and not the angular
momentum flux) which may resemble more the convection case with energy continu-
ously fluxed outward, is a case of ocean waves approaching a sloping beach and being
refracted due to the variation in the ocean bottom slope. The slope in the bathymetry
will result in the local variation in the phase speed ¢ = (¢H )%, and cause a refraction
in the orientation of the crest resulting in the waves approaching the coast parallel
to the shore line. In the case of the convection model the restoring force is the plan-
ctary vorticity rather than gravity, and the cause of the spiraling is the variation in
planetary vorticity gradient rather than the surface slope, but the analogy is in the
tilting of the wave guide.

To analyze the issue of spiraling further using the annulus model, we define the
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Figure 5.15: The angle of the spiraling of the cigenmodes as a function of the lincar
and the quadratic coefficients of the depth H(r). Angle is given in degrees eastward
of a line along the radius.

height of the fluid layer as
H(r) = Hy—ar—br?,

where Hy, a, and b are constants. We then solve for the eigenmodes for a series
of experiments where we vary the lincar and quadratic coefficients a, and b. The
curvature grows for larger b values. Figure 5.15 shows the results for a series of
experiments where a and b vary for the complete range of positive depths. The
angle of spiraling (zero is no spiraling) is calculated using the ratio of the real and
imaginary parts of z, at the radial point where the imaginary part is maximum for
the fastest growing mode. We sce that as the curvature becomes stronger, larger
spiraling develops which in the spherical convection model will be associated with an
angular momentum eddy flux divergence and the formation of superrotation. Note

that cven cases of b = 0 may cffectively have some curvature because the way the

gradients are defined in (5.35).




Chapter 6
Model Sensitivity Analysis

In the results presented so far we have used one specific geometric configuration
of the model, extending radially from the surface to 0.55 of the planctary radius,
and several nondimensional parameter configurations ranging from weakly nonlincar
runs to more turbulent runs. In this chapter we systematically vary each of these
parameters, namely the Rayleigh, Ekman and Prandtl numbers, to study their effect
on the various features studied in previous chapters. In addition we study the effect
of varying the geometric configuration of the model ranging from a thin spherical
shell to nearly a full sphere.

To preform a systematic assessment of these parameters, due to the long compu-
tational time of the 1° resolution runs presented in the previous sections, we use a
lower resolution configuration of 2° resolution latitudinally and longitudinally and a
pressure ratio of 2 between vertical levels. When comparing this configuration to the
1°configuration we find that the overall structure of the circulation (equatorial super-
rotation, number of columns, cte.) does not change significantly. However, the small
scale features at high latitudes disappear, and in particular the equatorial superro-
tation is on average 5° wider latitudinally. Nevertheless we find these experiments
useful in studying the parameter regime of the model, and we point to the differences
due to resolution in the discussion.

Bevond the magnitude of the forcing, we have made in chapter 2 assumptions on
the vertical profile of the forcing. Here. we study the effect of the continuous forcing
assumption made in section 2.5 by looking at a different tyvpe of forcing, and discuss
the effects solar forcing can have on the convectively driven circulation. In addition

we give examples of interesting solutions we find during spin-up that are unstable,
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and therefore have not been presented carlier when discussing the statistically steady

state solutions.

6.1 From a Spherical Shell to a Full Sphere

In previous chapters we have used a configuration in which the model extends radially
down to 0.55 the radius of the planet (~ 12 Mbar). In chapter 3 we discussed
this choice which is deeper than what has been done in the previous Boussinesq
models, and due to the complexity of the interior thermodynamics and the resulting
MHD effects, might even be bevond the relevant regime for Jupiter (although this is
controversial). However, the goal is to study a system where the vertical scales are
comparable to the horizontal ones, and to be in a regime where the location of the
bottom boundary does not put constraints on the dynamics. In this section we will
vary the depth of the model and study its effects.

We begin therefore with varving the geometry of the model by moving the location
of the bottom boundary. Since both Rayleigh and Taylor numbers depend greatly
on a depth scale (which we take to be the vertical extent of the model), then instead
of holding the Rayleigh and Taylor number constant in these experiments we hold
directly the viscosity and heat flux constant. Perhaps the best parameter to keep
constant in such experiments would be the ratio y = % which was shown in
section 4.5 to characterize the dynamics and has the H* dependence of the Rayleigh
and Taylor number cancel but still has a H> dependence on the total depth. To keep
the experiments simple we held constant the viscosity and heat flux directly.

In Figure 6.1 we show the zonally averaged zonal velocity for a meridional section
(similar to Figures 3.9) for a series of experiments where we vary the location of the
bottom boundary. We denote by D the ratio D = 5'—;—’11 where 74 is the top boundary
and 7 is the bottom boundary. The range of the experiments is from a relatively thin
shell (still has three orders of magnitude variation in density) occupying 10% of the
radius (D = 0.1), to almost a full sphere occupving 93% of the radius (D = 0.93).
For numerical rcasons we can not rcach a singular point in the interior, but higher
ratios are achievable with smaller time stepping. Jupiter is believed (Guillot et al.,
2004) to have a solid core occupying the inner 10% of the planet radius. This series
of plots shows that the superrotation is robust for most runs, though for the runs

with small aspect ratios the superrotation has a smaller latitudinal extent. For the
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Figure 6.1: The zonal mean zonal velocity as function of model depth. D = == is
the total depth where r; is the top boundary and r is the bottom boundary. Red
colors are castward velocities and blue colors are westward velocity. The magnitude
of the eastward velocity can be seen in Figure 6.3.
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Figure 6.2: Location of columns (blue) in terms of the fraction of the radius covered
by the model as function of model depth. The dashed blue line is the total depth
of the fluid. The red dots are the meridional extent of equatorial superrotation as
function of model depth. Each point is a numerical experiment ran to a statistically
steady state.

thinnest case (D = 0.1) we do not find superrotation, perhaps because there wasn’t
cnough resolution for formation of columns; or since x does depend on the depth of
the domain, and decreases with depth, then this thinner case may be in a parameter
regime where rotation is not dominant y < 1 similar to the case of slow rotation. As
can be understood from our analysis in chapter 5 the smaller latitudinal extent is due
to the columns being closer to the outside due to the smaller overall depth. However
as the model becomes deeper the columns develop further from the bottom boundary.
This shows that for a shallow model the choice of the location of the bottom boundary
sets the width of the superrotating jets, and perhaps the depth of the dynamically
significant region can be therefore deduced from the observations of the jets in the
outer atmosphere. Calculating this depth based on the observations of Jupiter and
Saturn gives a bottom boundary at approximately 0.07 and 0.2 respectively. Previous
numerical convection models have chosen a shallower domain than the one used in
previous chapters and indeed had a narrower superrotating jet. Note that even if
the dynamics are confined to a relatively shallow domain, it still will contain most of

variation in density and pressure scen in the deeper model we have been using, and it

138



40 T T T T 800

D
(8]
§ . o e
o ¢
T 30 ¢ 6005
3 ¢ B
B 3
: ¢ . 3
2 20 ¢ 4002
8 ¢
O )_<
. ¢ ¢ 3
2 10- )
€ 10 . ¢ ¢ ¢ . 300£
g
E o000

0.,7 Y SSS e —— 1 — L 1 = 1 - ,,O

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Aspect Ratio

Figure 6.3: Number of columns (blue) and zonal velocity intensity (red) as function
of model depth.

would have been harder to identify the mechanisms driving these dyvnamics working
with only the shallower domain.

An interesting feature is that as the model gets deeper, approaching a full sphere,
the columns do not move significantly deeper and the resulting width of the super-
rotation does not extend much beyvond 50° in latitude. This is shown more explicitly
in Figure 6.2 which shows on the left (blue) grid the location of the columns (taken
as the averaged radial location of the maximum in equatorial 2D streamfunction) as
function of the aspect ratio (D). Each point represents a numerical experiment, and
the dashed line is the total depth of the fluid. As the aspect ratio grows (model gets
deeper) the location of the column drifts slowly inward but becomes further away from
the bottom boundary. Looking at the equatorial plane we can identify the columns
and similarly to the standard case shown in chapter 2 they are all cyclonic.

The number of columns (estimated by a Fourier analysis of the 2D streamfunction
on the equatorial plane) around the 360° equatorial plane is higher for smaller aspect
ratios and is fairly constant as the model becomes deep. This is shown in Figure 6.3.
However the intensity of the columns and the resulting superrotation grow with depth
even though forcing is constant. This is despite y becoming bigger as the model is

deeper.
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Figure 6.4: A solution with multiple columns. This structure appears during spin-up
but in time will reduce to having only cyclonic columns. left: the equatorial stream-
function containing both cyclones and anticyvclones. middle: the total momentum pu
in meridional scction; right: The zonal velocity in a meridional section. Meridional
ficlds are of snapshots taken at 17 days from spin up and the equatorial slice is at 25
days.

6.2 Multiple Column Layers

In Busse’s original heuristic picture (Busse, 1976) for multiple zonal jets driven by
interaction between cylinders, he suggested that multiple columns at different radii
from the center may interact to causc alternating jets. In this picture the cylin-
ders were confined to the region outside the tangent cylinder surrounding the core
and extended throughout the planet. The discovery of jets at high latitude (Porco
et al., 2003) later overshadowed this suggestion since this would require the layers of
columns to extend deep into the region contained within this tangent cylinder. Only
if the internal region with no dyvnamics would be very small could such a scenario be
plausible. None of the lincar models, or the numerical Boussinesq models have found
solutions with multiple column layers. In the previous section we have shown that
ceven when extending the model almost all the way to a full sphere we find only one
layer of columns and they are located at an equal distance from the axis of rotation.

In this scction we show that we often get such multiple columns during the spin-
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up, however eventually due to shear they disappear and we find the solutions with
one dominant laver of column at an equal distance from the axis of rotation. Figure
6.4 shows on the left an equatorial slice where we find an inner set of anticyvelones
(blue) and at a greater radius a set of cvelones (red). Looking at different slices shows
that, similar to the case of Figure 4.13, these features extend as columns, parallel to
the axis of rotation, to the outer levels. The middle panel shows the zonal velocity
with multiple cast-west zonal jets at the surface. Such a picture would be desirable
for the Jupiter case with a wide superrotating jet and then alternating jets at high
latitudes. however we find that such a scenario is not stable and the multiple columns
eventuallv disappear. It is interesting that at this stage pu is nearly constant along
the axis of rotation, meaning as discussed in section 4.3.2 that the baroclinic vorticity
production has a near equal and opposite contribution from entropy and pressure
fluctuations. In time the interior part of the column becomes more barotropic and
the solution looks like Figure 3.9. The parameters for the run presented here are
the same as the in Figure 3.9. and are of instantancous ficlds. We find that as we
decrease the viscosity such solutions survive for larger times, despite the increase in
magnitude, or the circulation and vertical shear. It is possible that therefore that
experiments with higher resolution, where we can use smaller viscosities would have

stable solutions with such multiple columns and surface alternating zonal flows.

6.3 Model Sensitivity to Nondimensional Parame-

ters

In this section we look at the model sensitivity to Ravleigh, Prandtl and Ekman
numbers. Due to the simplicity of the model, and the use of uniform viscosity and
diffusivity coefficients the model is controlled by only these three parameters. Al-
though these nondimensional parameters define the system, since the GCM is not
naturallv written in terms of these parameters, we find it uscful to study both the
effect of the nondimensional parameters and the physical parameters that compose
them, namely the viscosity, diffusivity and heat flux. There is an obvious overlap
between these two approaches. but as we show theyv are not redundant and it is help-
ful in looking at different slices through the parameter space. For most examples we

keep the rotation period constant (9.92 hours), and therefore Ekman number (and
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experiment Ra Ek Pr x~! = Ra-Pr~'Ek? varying param. range color

Ral varies 1.5 — 4 10 varies Ra 1E6 — 5E7 red

Ra?2 varies 4E — 4 10 varics Ra 53E5 - 2E7 blue
Ra3 varies 8E —4 10 varies Ra LES — LET black
Pr1 36 47 — 4 varies varies Pr 0.8 — 12 green
Pr2 varies 4L — 4 varies 0.048 Pr 0.1 —5E3 purple
Ekl 3EG varies 10 varies Ek 1.5E — 4- 1.AE —3 magenta
Ek2 varies varies 10 0.048 Ek 1E —4-15E -3 gray
Lk3 3L6 varies 10 varies Lk T8 —-5-7E -3 orange

Table 6.1: Table of parameters for numerical experiments in chapter 6.

alternatively Taylor number) will depend only on the viscosity. The results will be
presented in terms of Ekman numbers and not the Taylor numbers but can be easily

converted. For convenience we write again the nondimensional numbers

Pr=%  Ta=*%L  Ry=5ill pgp_ v, (6.1)
where H is the total vertical extent of the model, and B, is given by
Q (% 2
B, = X (%) 6.2
v = = (% (62)

where the subscript 0 denotes the top level. We try and explore a parameter regime
as wide as the configuration and computational resources allow us. Ideally we would
like to increase Rayleigh numbers by decreasing the viscosity and diffusivity while
keeping reasonable heat fluxes, and therefore make the model as turbulent as we could.
This however is limited by the grid scale. For example the standard 1° resolution
configuration has 360 x 160 x 120 x 6 ~ 4FE7 computations per time step. Time
steps are small (typically 5 seconds) due to the convective nature of the system, and
therefore calculations are computationally demanding. We find it thercfore useful
for these series of numerical experiments to use the low resolution 2° runs. These
runs are presented in Table 6.1 where only Ral are 1° resolution cases. An important
component of this analysis is the effect of the rotation period. This has been discussed
in both sections 3.1 and 4.5, and therefore we will refer to those sections for this
discussion. We will use these results, though, in our discussion on the effect of the

Ekman number.
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6.3.1 The Rayleigh Number

We begin with experiments where we vary the Rayleigh number while holding the
Prandtl and Ekman numbers constant. The Rayleigh number depends on all three
physical paramecters (viscosity, diffusivity, and heat flux), and therefore since rotation
period (9.92 hours) is held constant, then a constant Ekman number implies a con-
stant viscosity. Then in effect in this set of experiments only the amplitude of the
heat flux is varied. We repeat these experiments ( Ral — 3 sce table 6.1) for different
values of Ekman numbers denoted in Figure 6.5 with different colors. Two degree res-
olution runs are denoted by diamonds, while one degree resolution runs are denoted
by squares. Each numerical experiment presented here, denoted by a single dot, has
been run to statistical steady state and data has been taken from the instantancous
fields.

The left pancl in Figure 6.5 shows that as the Rayleigh number increases the
magnitude of the equatorial superrotation increases as well. A stronger heat flux
provides more potential cnergy (from the convection) to the system resulting in a
stronger kinetic energy and superrotation. For the more energetic runs, the curves
level off reaching possibly an asymptotic limit. Christensen (2002) suggested a lincar
relationship when looking at the Rossby number as a function of the heat flux. Runs
of similar Rayleigh number will have higher velocities for higher Ekman number,
though the model resolution seems to possibly have an impact as well. This shows
that the magnitude of the superrotation in our runs does depend on the magnitude
of the forcing, however this dependence may decrease for high Rayvleigh numbers as
indicated particularly by the higher resolution runs (red). In section 4.7 we have
shown that although this magnitude does depend on the choice of the Rayleigh num-
ber it is still consistent with mixing length theory estimates for the magnitude of the
velocity as function of the forcing. For the whole range of Rayleigh numbers that
we have experimented with we have found that the convective structures and mecha-
nisms studied in chapter 5 are consistent. In Boussinesq, Cartesian. Rayleigh-Benard
convection experiments Sprague ct al. (2006) have found that as Rayleigh number is
increased the flow within the columns increases in strength, as in our experiments,
but leading eventually to a breakdown of the Tayvlor columns due to enhanced lateral
mixing. In our experiments we have not found this to happen, and actually have
found the ratio of the vorticity of the columns to the background vorticity to grow

with Rayleigh number, with more profound columns. However, even if the columnar
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Figure 6.5: The model sensitivity to Rayleigh number. left: The magnitude of equa-
torial superrotating zonal velocity |m/s|; right: latitudinal extent of cquatorial su-
perrotation [degree];

structure would break for some higher Rayleigh number, the convective plumes will
still be aligned with the rotation axis (as in the Sprague ct al. (2006) experiments at
high Rayleigh number), and therefore much of the angular momentum flux and the
mechanisms described in chapter 5 will still hold.

The equatorial superrotation on Jupiter extends roughly to latitude 17° and on
Saturn to latitude 30° (Figure 1.1). We have shown in section 6.1 that in our model
the latitudinal extent can depend on the depth of the domain for shallow cases (Fig-
ures 6.1, 6.2). In Figure 6.5 we show that this latitudinal extent depends on the
Rayleigh number as well and runs with higher heat flux develop a narrower equato-
rial superrotating jet.

Extrapolating these results to the regimes relevant to Jupiter and Saturn is dif-
ficult since the model (eddy) viscositics are many orders of magnitude larger than
mean molecular viscosities. Therefore to maintain a large Ravleigh number we must
compensate with a larger heat flux. If one used the Rayleigh number with the eddy
viscosities to calculate the actual heat flux, the resulting flux would be many orders
of magnitude too large.

A useful measure which eliminates the dependence on molecular parameters will
be x ! = Ra - Prm'Ek?. We have shown already (scction 3.1.1) that this parameter
determines the level to which the convective plumes are aligned with the rotation axis,
scparating therefore between the rotationally dominated convection to gravitationally

1

dominated convection. Using the parameter x~! allows comparing a larger set of

numerical experiments. For most cases (all but Ek3) the rotation period is constant
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and therefore y ! is a measure of the magnitude of the convection. In the upper

panels of Figure 6.6 we look again at the magnitude and latitudinal extent of the

U values is the limit where the convection

superrotation. The upper bound of y~
will not be aligned with the rotation axis. At that point no convection columns
will appear and the whole mechanism for superrotation described in chapter 5 will
break. As seen in Figure 4.11 at this point the equatorial flow would rapidly switch

U'is when convection is weak and

from super-to-sub rotating. The lower limit of y~
is limited by either the critical value of convection (3.11) or numerical limitation of
the eddy Ekman number. It can be seen on the left panel that the higher resolution

1

experiments can reach lower y = values since the higher resolution allows having a

smaller eddy viscosity. The importance of this is that they are supereritical for lower
v ! numbers, and seem to reach a point where more turbulent runs do not necessarily
have stronger equatorial velocities. This is seen also but to a lesser extent in the 2°
resolution runs. Such a scenario will mean that the velocities in our model, which are
on the order of magnitude of the winds on Jupiter and Saturn. might be more robust
than indicated by the slope in Figure 6.5.

In the lower left panel in Figure 6.6 shows the dominant wavenumber for the
streamfunction on the equatorial plane. This will serve as an approximation for
the number of columns surrounding the interior core. The results indicate that the
further the model is into the rotationally dominated regime, the more convection
columns we find around the equatorial plane. As a caveat. note that since there is
a clear separation between the high and low resolution results the numerical values
arc affected by the model resolution. These results might imply that going to higher
resolution runs with lower Ekman numbers will lead to significantly more convection
columnar structures which will result in a higher frequency waves on the surface.
The waves observed on the surface of Jupiter (Reuter et al., 2007) have a 300 km
wavelength which is currently ™3 of the resolution of our runs. Therefore it is hard to
identify our results with the observed waves; however the spatial resemblance (crests
that are curved eastward and centered at the equator), the phase speed which is about
equal to the mean zonal velocity (as in the model), and this result suggesting that
the number of columns (and therefore resulting waves), will increase with resolution
brings us to hypothesize that the observed waves might be a surface manifestation of
finer structure convection columns.

The lower right panel in Figure 6.6 compares the full kinetic energy to that of the
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Figure 6.6: Model dependence on y = Ra - Pr'Ek?. Run color code corresponds
to parameters in table 6.1. upper left: latitudinal extent of equatorial superrotation
[degree|; upper right: magnitude of equatorial superrotating zonal velocity |m/s|;
lower left: mean number of columns around the equatorial plane; lower right: ratio
of total kinetic energy to the kinetic energy of the non-zonal components.

non zonal components. In all cases we find that the zonal kinetic energy dominates.
Although it is hard to follow a particular trend for a specific set of runs, in general
it scems that the higher energy runs have a stronger zonal component in the total
kinetic energy. Some of the sets of runs reach a maximum bevond a specific heat flux
but determining this will require more runs.

We conclude that in the parameter regime we have studied the Rayleigh number
does affect both the amplitude and the latitudinal extent of the jet. We may expect
that runs at higher resolution which will be capable of higher Rayleigh numbers and
lower Ekman numbers will not depend (magnitude wise) on the Rayleigh number and

will have (even without the effect of the bottom boundaries) a narrower superrotation.
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Figure 6.7: The dependence on Prandtl number with constant heat flux (diffusivity).
left: ratio of total kinetic energy to the kinetic energy of the non-zonal components.
right: magnitude of equatorial superrotating zonal velocity |m/s].

6.3.2 The Prandtl Number

To study the dependence on the Prandt] number we perform two sets of experiments.
In one we hold the Ekman and Ravleigh numbers constant and vary the Prandtl
number (r1). In this case diffusivity varies and the heat flux adjusts accordingly to
keep the Rayleigh number constant. These results have been presented in Figure 6.6
and have a similar effect to holding the Prandtl number constant and varving the heat
flux. The sccond set of experiments ( Pr2) is holding the Ekman number constant
and varving the Prandtl number while the heat flux is constant (y~' = 0.048), so
that the Ravleigh number will vary as well. In this case, since only diffusivity varics
Ra - Pr'is constant. In Figure 6.7 we look at the results for this experiment. The
right side plot shows on the horizontal axis both the Prandtl number (bottom) and
Rayleigh number (top) since only diffusivity is varving. It shows the increase in the
mean amplitude of the superrotation up to a level where bevond it the mean velocity
remains roughly constant. This plot can be seen as an extension of the corresponding
plot in Figure 6.5 extending into a region of higher Rayleigh number so that the
magnitude of the velocity is no longer a function of the Rayleigh number. Despite the
high Rayleigh numbers the run is not more turbulent and only means that bevond
Pr ~ 2, for these run paramecters, diffusivity is small so that the amplitude of the
zonal velocity is insensitive to the Prandtl number.

We find that the latitudinal extent of the superrotation does not depend on the
diffusivity. Runs with higher Prandtl number do have a higher wavenumber to the

equatorial streamfunction on the equatorial plane, and as in the case of the zonal
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Figure 6.8: The model sensitivity to viscosity. left: maximum values of equatorial
streamfunction. right: surface superrotation zonal velocity.

velocity it becomes constant beyond a certain point for high Prandtl numbers. The
left panel in Figure 6.7 shows the ratio of full kinctic energy to that of the non zonal
components and indicates higher ratios for lower Prandtl numbers. The run with

Pr = 0.5 is the weakly nonlincar run presented in section 5.1.

6.3.3 The Ekman Number

We study the effect of the Ekman number in three sets of experiments. In the first we
keep the Rayleigh and Prandtl numbers constant and vary only the Ekman number
(keeping again the rotation constant) so that we change effectively the viscosity and
the heat flux adjusts accordingly. In the second set of experiments we keep the Prandtl
number and heat flux constant, so that when varyving the Ekman number (viscosity),
the Rayleigh number changes as well. The third experiment is similar to the second
onc only varying the Ekman number by changing the rotation period instead of the
viscosity.

Beginning with the first case, since the Prandtl number and heat flux are constant
we look at the model effectively as only the viscosity changes. In Figure 6.8 we show
the magnitude of the equatorial streamfunction and superrotating zonal velocity as
functions of the Ekman number. We find, as can be expected, that as viscosity
increases the magnitudes of both decreases. Going back to the zonal momentum
balance in (4.20), as angular momentum is fluxed outward by the eddy fluxes, the
balance between the eddy flux term and the viscosity happens carlier as v increases,

and therefore both the superrotating winds and the rotation of the columns (correlated
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Figure 6.9: The model sensitivity to the Ekman number. upper left: The mean
number of columns (wave number) on the equatorial plane; upper right: mean surface
zonal velocity of the superrotation: lower left: NMeridional extension (latitude) of the
superrotation: lower right: ratio of full kinetic energyv to the non zonal kinetic energy.

to the eddy angular momentum flux) are weaker.

For the second case keeping both Prandtl and Rayleigh numbers constant as the
Ekman number (viscosity) varies, the heat flux adjusts accordingly. Therefore a
higher Ekman number means a larger heat flux, and thus we find that the strength
of the superrotation increases with Ekman number, although Ravleigh number is
constant. This means that the strength of the superrotation is related to the heat
flux and not to the values of the Ravleigh number itself. On the other hand, as we
increase the Ekman number the number of columns. which is estimated by a Fourier
analysis of the streamfunction. on the equatorial plane decreases. This indicates that
in a higher resolution model where we would be able to reach lower Ekman numbers
we may expect to find more columns and surface waves. In addition as we increase
the Ekman number the meridional extent decreases although it levels oft for lower
Ekman numbers. Finally the ratio of the full kinetic energy to that of the non zonal

components grows with Ekman number.
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6.4 The Effect of the Forcing Profile

In section 2.5 we discussed the use of an adiabatic vertically continuous forcing profile,
which does not confine the convection to the boundaries and is a way of representing
the longer time scale cooling of the planct. Other models (e.g. Heimpel and Au-
rnou 2007) have used isothermal boundaries and therefore forced Rayvleigh-Benard
tvpe convection; however this is an extreme oversimplification of the forcing and the

planet does not have an isothermal boundary. A similar boundaryv dependent forcing

i

2D Stn. Forcing 2D Bottom Flux
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3D Bottom Flux

Figure 6.10: Comparing different forcing profiles for 2D and 3D cases. upper left:
2D with vertical forcing profile (section 2.5). upper right: 2D with bottom flux and
Newtonian cooling on top; bottom left: 3D with vertical forcing profile; bottom right:
3D with bottom flux and Newtonian cooling on top.

would be applving a heat flux at the bottom boundary and relaxing to a reference
temperature on top. We have used this profile for the discussion about the critical
Rayleigh number in section 3.1.2. Although less realistic than the continuous profile
it is worth comparing the statistically steady state solutions to learn if the result is
dependent on the form of the forcing. Here, we compare the results using both types

of forcing for both the 2D and 3D cases. As can be seen in Figure 6.10 we find that
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for the 2D experiments a bottom heat flux will cause the dynamics to be constrained
to the inner part of the sphere. For the 3D although at the initial stages (not shown)
the convection is different (plumes rising from the bottom boundary), after enough
time the profiles with both types of forcing become quite similar. The reason this
makes a difference in the 2D case is the constraint given by (3.13) which is even more
limiting in this case because of the convective plumes only rising from below. Note
that the 3D runs are of 2° resolution; as discussed in section 6.3 the higher latitudes
do not maintain the finer structure seen in the 1° resolution runs such as in Figure

3.9. All cases here are using the full anelastic density variation.

6.5 Summary

The deep anelastic GCM we developed and studied in previous chapters is analyzed
over a range of parameters. Such a study is essential in order to get a feel for the
parameters of the model. Due to the simplicity of this idealized GCM the parameter
regime is limited to mainly three nondimensional parameters beyond the geometric
configuration of the model and the choice of forcing profile. We perform sets of nu-
merical experiments changing both the geometric configuration of the model and the
nondimensional control parameters. We find that using a shallower or deeper domain
preserves to the most part, the main characteristics of the circulation, including the
superrotation and convection columns. A shallower domain which is consistent with
some of the recent MHD estimates (Liu, 2006), would in fact limit the superrotation
to a narrower latitudinal band which is consistent with the observations on Jupiter
and Saturn. On the other hand extending the model to a full sphere does not extend
the superrotation to the poles, and beyond a certain depth the superrotation is close
to being invariant to the depth of the domain.

We find that the magnitude of the superrotation in our model does depend on
the Rayleigh number for the parameter regime studied. An important distinction is
whether the amplitude of the superrotation is sensitive to the full Rayleigh number or
to the heat flux itself. The results at this point are still indecisive. If the total Rayleigh
number is key, then the use of large eddy viscosities is justifiably compensated by the
use of large heat fluxes. If on the other hand, the effect of the viscosity saturates at
some limit (still far from the molecular limit) then possibly the velocities resulting

from realistic heat fluxes will be considerably smaller. For the parameter regime
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we have been able to explore this questions remains open. We find that beyond a
certain limit the Prandtl number becomes irrelevant due to the small diffusivities,
and although Rayleigh numbers will grow for such a case, effectively the circulation
will not change. In general we find that using smaller Ekman numbers and larger
Rayleigh numbers (which are in the direction of more realistic numbers), will result in
more, and smaller scale, convection rolls and a resulting superrotation which is more
latitudinally confined.

Other possible solutions, such as ones with multiple layers of convection columns,
which currently naturally appear during spin-up, but usually are sheared apart as the
model spins-up toward having one layer of cyclonic convection columns, have been
shown. Since for the lower Ekman number cases these solutions are sustained for a
longer period, despite the shear being large, we suggest that in high resolution runs

we may find such solutions which are stable.
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Chapter 7

Formation of Multiple Zonal Jets by

Baroclinic Instability

7.1 Introduction

In this chapter we use a simplified model to look at a different aspect of the dynamics.
The full GCM has been instrumental in understanding the mechanism for superro-
tation and the dynamics arising from convection in a rotating spherical deep system.
We have seen the formation of columnar modes which propagate eastward due to the
background planetary vorticity gradient. The mechanism causing the propagation of
these modes is similar to that of a standard Rossby wave on the exterior of a sphere,
only that the planetary vorticity gradient is in the opposite direction, thus growing as
one goes to lower latitudes (the equivalent of moving radially outward in the interior
of a sphere).

The opposite planetary vorticity gradient can be thought about in terms of conser-
vation of vorticity in column of fluid. If constrained to a thin spherical shell then as as
a fluid column moves towards the axis of rotation the fluid column shrinks in length,
and therefore this would be equivalent to a sloping surface with a positive slope, as
the planetary vorticity grows, and therefore a positive 3 effect. On the other hand
columns which penetrate the depth of the planet as we have seen in our GCM (Figure
4.13), will stretch as they move towards the axis of rotation, and therefore will be
equivalent to having an opposite sloping surface to conserve planetary vorticity which

is equivalent to a negative 3 effect. Following the approach of Ingersoll and Pollard
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(1982) we have shown that for an anelastic fluid the radially varying density profile
will cause a larger magnitude negative 3. The equivalent 3 for both the Boussinesq
and anelastic cases can be seen in Figure 5.9.

We have discussed the two very different and essentially decoupled approaches used
to model the atmospheres of the giant planets (section 1.3). We have shown that the
deep approach which we have taken for our convection model can explain some ele-
ments of the dynamics such as superrotation, meridional poleward heat transport and
possibly some of the waves observed within the equatorial superrotation. However, el-
ements such as the formation of multiple zonal jets do not appear in the deep anelastic
model. Our simulations indicate that possibly a higher resolution model with smaller
viscosities will be able to produce more meridional structure in the zonal wind field.
Examples of such solutions we present in section 6.2. Nevertheless, the similarity of
the observations to weather patterns seen on Earth, and the existence of a thin but
important stably stratified layer at the top of the atmosphere due to solar insulation,
leads us to assume that there are important components to the dynamics beyond the
convectively driven system.

Therefore in this chapter we look at a simplified model which contains components
from both the shallow and the deep approaches. We use a two layer quasigeostrophic
model where the upper layer is a standard quasigeostrophic layer on a  plane, and
the lower layer represents the deep interior convective columnar structure using a
negative [ plane. The model is shallow in the sense that is quasigeostrophic and the
jets are created by interactions of the eddies on a 3 plane. However, the presence
of the negative 3 for the bottom layer makes the dynamics, and particularly the
criterion for baroclinic instability, quite different than a standard quasigeostrophic /3
plane model. We suggest that the interaction between the isentropic interior and the
“weather layer” drives the multiple zonal jets.

This approach can be distinguished from previous shallow type models in several
aspects. First, due to the weak meridional temperature in the upper atmosphere of
the giant planets, baroclinic instability has been assumed to play a minor role in
the dynamics of the jets. However as we show, due to the different geometry in the
interior, even a weak baroclinic shear can result in substantial zonal flows that are
stronger than the eddy field, and moreover baroclinic instability introduces a strong
meridional variability in the velocity field. The instability acts as an energy source

for the eddies, and the nonlinear eddy-mean interactions act to stabilize the flow.
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Therefore unlike previous shallow water or quasigeostrophic models which use either
random forcing or deal with decay of strong initial perturbations, leaving it unclear
how such a state can be maintained, this model accounts for the energy of the eddies
through baroclinic instability. Baroclinic instability provides an energy source, so
that energy does not have to be pumped in to maintain the jets. Other baroclinic
instability models (Panetta, 1993; Williams, 2003), require large-scale baroclinicity
strong enough to satisfy the Charney-Stern theorem, but which may be larger than
the level of baroclinicity on the giant planets.

Second, the observed winds violate the barotropic stability condition (Ingersoll and
Cuong, 1981), thus 3 —u,, < 0 at some latitudes, although the zonal winds appear to
be very stable. In contrast, all of the shallow models produce curvatures u,, which are
smaller than 3, so that the predicted jets are weaker or wider than the Jovian ones.
We find that 8 and u,, have similar values (thus the barotropic stability condition
is violated) and still the jets are shown to be stable. Third, most previous model
assume a boundary at a depth of about one scale height, with the fluid below being
motionless. Although this model is not deep due to the quasigeostrophic assumptions
we show that the jets in the upper levels are maintained and are baroclinic when the
bottom layer gets deeper. Using the negative 3 assumption gives some representation
of the deep dynamics seen in the full convection model. Finally, in many cases (e.g.
Panetta, 1993) the jets are obvious only in the zonally or time average profiles, while
here the jets are seen in the instantaneous picture as well. A main difference is that in
those models the scales of both the instability and the resulting jets are on the order
of the Rossby deformation radius, while here there is a scale separation between the
instability which is much smaller than the jets which are again on the scale of the
deformation radius.

Several authors have used this idea of a negative 3 plane. Ingersoll and Pollard
(1982) developed a stability criterion for columnar motions inside of a compressible
fluid sphere. Their equivalent barotropic stability equation has an effective 3 which is
negative and three times the value from the sphericity of the planet. On Jupiter and
Saturn the observed winds are close to marginal stability according to this criterion.
Yano and Flierl (1994) have used a negative bottom layer 3 to demonstrate its effect
on an isolated vortex like Jupiter’s giant red spot in a zonal jet, and Yano (2005)
suggested that this can effect the direction of the equatorial jet. We will show that

having different and opposite-signed 3 values in the shallow and deep layer makes the
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dynamics different and favorable for creating jets even for weak baroclinic shears.

We begin with analysis of the stability problem in a two layer quasi-geostrophic
model similar to the Phillips model (Phillips, 1954), but with the lower layer deeper
than the upper layer and having a different geometry represented by the different /.
Unstable modes appear at high wave numbers for low shears, implying there may be
a significant scale separation between the eddies and the mean flows generated by
the nonlinear interactions and the energy cascade. Next, since the fastest growing
mode is the key contributor to the initial instability, we develop an analytical theory
for the nonlinear problem containing of only this mode and zonal flow corrections.
This truncated model which is presented in section 7.4 gives an analytic expression
for an induced zonal flow which has a multi-jet meridional structure, and which is not
limited to the weakly supercritical case (Pedlosky, 1970) so that it can be as strong
as the eddies. We show that this model can reduce to the weakly supercritical case
in section 7.5.

Then, using a pseudo-spectral fully nonlinear numerical model containing many
initial modes, we show that indeed an induced zonal flow with a multi-jet meridional
structure is generated from the baroclinic instability. The truncated model predicts
well both the number of jets and their amplitudes. This emphasizes the importance
of the truncated model which allows us to isolate the physical mechanism of the jet
formation before the system becomes turbulent. In time, as more unstable modes are
generated, quasigeostrophic turbulence begins and an inverse energy cascade gener-
ates wider and stronger jets. Once the meridional scale of the jets has reached the
Rhines scale, these jets become stable and in most cases have a bigger amplitude
than the eddy field, thus creating a multi-jet structure across the whole channel. A
complete description of the numerical experiments is given in section 7.6.

A few mechanisms govern the generation and stability of the zonal jets: baroclinic
instability extracts energy from the basic shear at high wave numbers to form small
scale eddies, eddy interaction creates an induced zonal flow with a strong meridional
variation, and eddy-mean flow interaction creates exchange of energy between the
eddies and the mean flow which stabilizes the flow. The truncated model allows us to
isolate these phenomena. Baroclinic instability tends to sharpen and intensify the jet
once it is created while quasi-geostrophic turbulence will tend to cascade the energy
into larger scales. Both effects can be seen in the numerical experiments. A discussion

of these mechanisms and its relation to the Jovian jets is given in section 7.7.
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7.2 'The Two-Beta Model

We use a two layer quasigeostrophic model (Phillips, 1954), with a simple shear flow
on a 3 plane in a zonal channel of meridional width L. The layer thicknesses are
different, such that the upper layer is much shallower than the lower layer, in order to
represent a thin weather layer and a deep adiabatic interior. Although the two-layer
model is often thought of as representing homogeneous incompressible fluids with the
deep layer having a slightly larger density, Flierl (1992) argues that an isentropic
interior with a thin weather layer of higher entropy gives the same equations. In
order to parametrize the deep layer flows (Ingersoll and Pollard, 1982), we use a
negative /3 plane in the bottom layer and a standard 3 plane for the upper layer, as
discussed in section 7.1. The opposite-signed 3's make the stability problem quite
different from the classical case (c.f. Pedlosky, 1970). There is a free interface between
the two layers whose horizontal height gradient is related to the difference in pressure
gradients within the layers. The quasigeostrophic inviscid potential vorticity equation
for each layer, dimensioalized in the standard way as in Pedlosky (1987) is

0 0v,0 0Y,0 :

ot ooy oy sl Ut
(=1)" F, () — ¥y) + By] = 0. (7.1)

where n denotes the layer, ¥, is the stream-function and F, is the non-dimensional
Froude number given by
f2L2

b = 1:2
s D, (7.2)

where f is the Coriolis parameter, ¢’ is the reduced gravity, and D, is the layer depth.

For future notation we denote the full potential vorticity in each layer as
II, = vqun+(_l)n Fn (\Ill _\II’Z)'FD)H.U- (73)
We will assume the simplest basic state with a uniform flow in each layer,

Vo, = =Uyhy. (7.4)

157




The total streamfunction is composed of the mean part (7.4) and a perturbation
U, =¥y, + on (7.5)

and the equation for the perturbation stream function is

0 .0 - O0dn .
(5 + Ve ) o+ 10" Fa (0 = Vo) 4 50l G2 4 S(0ma) = 0 (19
where
gn = V2¢n + (_1)71 Fn(¢l = ¢2) (77)

is the perturbation potential vorticity and J(¢,, ¢,) is the Jacobian of streamfunction
and potential vorticity. The boundary conditions on the walls of the channel at
y = 0,1 are that the meridional velocity vanishes and the zonally averaged circulation

on the two walls is conserved (Phillips, 1954) so that

dz =0 (7.8)

o, a /a\yn
or ot

0 3y

7.3 Linear Stability Analysis

We begin by addressing the linear stability problem in a similar fashion to Phillips
(1954) and Pedlosky (1970). Wave solutions which satisfy the boundary conditions
(7.8) can be found in the form

b2 = v, = yAe*E=gin (mmy) (7.9)

where m is an integer, k is the zonal wavenumber, A is the amplitude of the wave in
the upper layer, and ~ is the ratio between the amplitude of the perturbation in the

lower to that of the upper layer. Only k is restricted to be real. Substituting (7.9)
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Figure 7.1: Stability curves for the two § case for the vertical shear as function of the
total wave number . The contours are of the growth rate in non-dimensional units,
and the parameters used here are F; = 100, F, = 20, 8; = 10, and 3, = —30.

into (7.6) and solving the linear eigenvalue problem gives the dispersion relation

Us K+2F B +FR)+5 (K +F)
2 K2+ F + F 2,‘\72(K2+F1+F2)
1 r2 4 4 L
]  — AR F 10
2&2(,<,2+F1+F2){L5" 8 1F2) )
o+ 2(]5/42 [(62 -= 61) (K]4 - 2F1F2) -+ /{2 (JZFX E 13]F2)]

1
2

c = [/v2+

+ [(K2+F1)ﬁ2— (li2+F2) 31]2+4F1F2f31ﬁz}

where Us = U; — U, and k? = k? + [? where [ = mn. The solution also gives an
expression for the ratio between the perturbation amplitude in each layer
K2 Fl (J'S + B]

el =

- 711
F Fy (L =¢) L)

As seen in Figure 7.1 the short wave cut-off for classical two-layer baroclinic in-
stabilities has disappeared and the marginal instability curve has a tail towards the
high wave numbers. This effect does not require the bottom layer 3 to be negative,
only to differ from the upper one as shown by Steinsaltz (1987) for the case of a slop-
ing bottom or by Robinson and McWilliams (1974) for a case of a varying bottom
topography. However, the form of the potential vorticity (7.3) shows that for cases

where the sign of 3 is different in the two layers, the necessary condition for instability
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can be reached for arbitrarily weak shears, and analysis of (7.10) shows that this tail
asymptotes to zero shear as k — oo (Figure 7.1). Therefore, baroclinic instability
may arise with the maximum growth rate at high wave numbers even when the shear
is very small. As seen in Figure 7.1, the growth rate for a very small shear may itself
be very small, and may seem insignificant, but since the observed zonal jets on the
outer planets are long lived, an energy source from the weak instability may suffice.

The form of ¢ (7.10) is symmetric in the meridional and zonal wavenumber. Apri-

Figure 7.2: Growth rates in horizontal wave number space for the two 3 case. The
x axis is the zonal wave number and the y axis is the meridional one (divided by
7). The growth is confined to a band of few wave numbers. Due to the boundary
conditions, the fastest growing mode (in this case k,,, = 5, [;, = 3 - marked with an x)
is not necessarily the gravest mode. The parameters used here are F; = 100, F, = 50,
B1 =10, B = —30 and Ug = 0.153.

ori, one might think that the lowest meridional wave number for a given shear will
be the most unstable (since the growth rate is kc;(k) = vk — [2¢i(k)) so that the
growth will not generate much meridional structure. However, the meridional and
zonal wave numbers must be quantized as multiples of 7 to satisfy the boundary
condition in the channel, and for weak shears the band of unstable wave numbers is
thinner than 7 in wave number space. Thus for a given shear it may be that only

high meridional wave numbers are unstable. This is demonstrated in Figure 7.2.
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7.4 The Nonlinear Truncated Model

The linear stability analysis implies that the short wave perturbations will become
dominant for weak shears. In relation to the Jovian jets this implies the possibility
of baroclinic instability creating a highly varying meridional structure. Of course,
this must be tested in a full numerical model, and obvious questions are: can this
meridional variation evolve into zonal jets? And if so, are the zonal velocities stable
over time? In section 7.6 we use a full nonlinear numerical model to test this. However,
before doing that, we can get some insights by solving the nonlinear system truncated
to a perturbation in one wavenumber. Although this restricts the nonlinear nature of
the solution, the band of initial growing modes in the two [ case is limited (Figure
7.2), so that this solution actually reproduces quite well (Figure 7.5) the initial stages
of the fully nonlinear solution obtained numerically in section 7.6.

Therefore, we proceed to examine the nonlinear dynamics with taking the per-
turbation to have only one zonal wave number and one meridional wave number.

Rewriting (7.6) in terms of the barotropic IIr, ¥+ and baroclinic I1¢, ¥ components

gives
0 "
'&HT’YLJ(WT,HT)'FJ(\I/(‘,HC) = (112)
0
EHC-F.](\IIT—FE\I’C,HC) +J(Yp,Ilc) = 0 (7.13)

where the barotropic and baroclinic components of the potential vorticity are

B oIl + I, e
0 = Sy .
Vi .

[le = m(nl—n'z) (7.15)

and § = %; is the layer depth ratio. The same structure applies for the barotropic
and baroclinic stream functions ¥, and ¥¢. The parameter £ = %2 comes from the
unequal upper and lower layer thicknesses. Split into a basic state and a perturbation
and using (7.3) and (7.4), the barotropic and baroclinic potential vorticities and

streamfunctions are
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VYr = ¢r (7.16)

Yo = —Ucy+dc (7.17)
861 + 3
IIr = % +qr = Qry +4qr (7.18)
\/g o
g = m(51—52)+(F1+F2)UC Yy+4qc = Qcy+qc (7.19)

where Ug is the baroclinic shear, and ¢ and ¢ are the perturbation stream function and
potential vorticity respectively. Note that the basic state barotropic streamfunction
has been taken to be zero. This can be done due to the Galilean invariance of the
two-layer system. Then the barotropic and baroclinic equations (7.12, 7.13) take the

form

d .0 0 0
= qr+ Uca‘]c + QT%d)C + Qca—xcﬁc

ot
+J (é1,97) + J (dc,qc) = 0 (7.20)
d e d d
EQC + Uc (%QT + {gqc) + QT%‘”
0 0
+Qc (5;% +§a—m¢c> +J(¢r +E€dbc,qc) + I (be,qr) = 0 (7.21)

We express the solution as a single potential vorticity perturbation wave which satis-
fies the boundary conditions (7.8) of the form

gr = ¢p(t)e*®sin (ly) + c.c. (7.22)
gc = qn(t)e*sin(ly) + c.c. (7.23)

and then the perturbation stream functions can be expressed via the inversion relation
so that

br = & (7.24)
K
=4¢
e Eee O 7.25
vc 5+ F o+ Py 720}
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The main advantage of writing the quasi geostrophic potential vorticity equations in
this form is that when plugging (7.22-7.25) into (7.20,7.21) the Jacobians from the
barotropic equation (7.20) vanish, while the baroclinic nonlinear contribution (7.21)

gives

J(o1,9c) + J (Pc,qr) =
WRF) [, o] H
K2 (k2 + Fy, + Fy) [QCQT - qC(]T] sin (2ly) (7.26)

This is where the truncated nature of the solution appears. The nonlinear baroclinic
interaction gives a zonal mean correction to the basic flow with a specific meridional
structure which depends on the choice of the truncated mode. Nevertheless, as men-
tioned in the linear analysis (which applies when the perturbation is small) since the
band of growing modes contains only few modes (Figure 7.2) an approximation of
only one growing mode turns out to be a fair approximation. Since the basic zonal
flow is fixed, we can specify this mode to be the fastest growing mode. Therefore we
can split the baroclinic equation (7.21) in two: one part for the linear perturbation,
and another for the nonlinear correction. From the solution to the nonlinear part
(7.26) we can approximate the structure of the nonlinear correction to the potential
vorticity as having the form

gc = q (t) sin (2ly) . (7.27)
This form is unlike the linear perturbation part (7.7, 7.9), having no zonal dependence
and a different meridional structure. This nonlinear correction to the basic baroclinic
state must also satisfy the two boundary conditions given by (7.8). In order to ensure
this, we use the inversion relation from (7.7) for the zonally averaged case

92

[8—1/2 =iyt Fz)] ¢c =1qc (7.28)

which, when solved for ¢¢ with the boundary conditions, gives a correction to the
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basic zonal velocity

7o~ e
€T WP+ P
h |V F, + F. =) !
cos (2ly) — — VE AP (y—3) (7.29)
cosh (———" F‘2+F"’)

This result is similar in form to that found for the weakly nonlinear theory by
Pedlosky (1970). Here though, the weakly nonlinear requirement is relaxed (but
replaced by a truncation assumption) and this correction may extend into the highly
supercritical regime, as we show in the numerical experiments in section 7.6. The
amplitude of this zonal flow is not limited to the weakly varying parameter and, in

fact, can be stronger than the eddies themselves.

Figure 7.3: The analytical baroclinic induced zonal velocity Uc (7.29) from the trun-
cated model as function of the channel width for the first four meridional modes.

Figure 7.3 shows the shape of the mean flow correction for the first few modes,
and indicates that for the higher modes we expect to get a multi-jet meridional struc-
ture. This baroclinic contribution tends to reduce the shear rather than increase it,
causing oscillations in the amplitude of the perturbation in the classical weakly su-
percritical case (Pedlosky, 1970); once the correction reduces the shear enough it goes
back into the stable regime, halting the growth until the effect of the nonlinearities
decreases, and the cycle repeats. Here, since the flow may be strongly rather than
weakly supercritical the nonlinear wave effects may not be enough to halt the growth.

For the cases of high wave number perturbations, though, the growth band (Figure
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7.2) becomes narrow in wave space so that the effect of the nonlinear correction is
similar to that of the weakly nonlinear case, and the perturbation may reach a steady
equilibrium. These oscillations can be seen in Figure 7.4.

The truncation and the separation of the nonlinear part out of the baroclinic
equation allows us not only to find the baroclinic induced zonal velocity U, but
to solve for the perturbation amplitudes and the baroclinic mean. We can write
the truncated system as a closed system of three equations for three unknowns; the
perturbation amplitudes ¢7,q and the baroclinic mean % The specifics of this

derivation are given in Appendix (B.1). The resulting system is

0 ——
b;q +ikLq + ikqpNq = 0 (7.30)
8—,— lkl(F1+F2) ' ! % ! :|
£, — * ! == '-v. ]
59t (2 1 By + Fy) 909 ~ dcdr 0 (7.31)
4
where q = ( q,T > and the operators N and L are given in Appendix (B.1) as well.
loj

This solution is shown in Figure 7.4 which plots the evolution of enstrophy in time for
the linear case, the truncated nonlinear case, and a full nonlinear model containing
many modes (section 7.6). This example shows how the nonlinearities stabilize the
initial instability in both the truncated and full model.

Since the initial perturbation is small, and the system is baroclinically unstable,
the perturbations in all models grow similarly. When the effect of the nonlinearities
is large enough, the nonlinear models separate from the linear model and, since the
perturbation is dominated by the most rapidly growing mode, the truncated model
with only this mode gives a reasonable estimate of this separation point. Then the
truncated model begins to oscillate by exchanging energy between the perturbations
and the basic flow, whereas the full model (which resolves harmonics neglected in
the truncation) equilibrates with a much more steady amplitude. In general this
truncated solution captures well when, where, and how the interaction with the mean
flow halts the instability. We have seen a somewhat similar interaction between the
nonlinearities and the mean flow in the convection model (section 5.1). There, the

nonlinear eddy fluxes induced a mean zonal velocity and then acted to exchange

energy between the upgradient momentum fluxes and the viscous fluxes (see Figures
5.1 and 5.2).




1E8"

1E4:

Enstrophy

~=Linear model
-=-Truncated model
\—Full model

0 - 300
Time

Figure 7.4: The enstrophy as a function of time. The dash-dot line is the linear growth
rate for the fastest growing mode using the linear growth rate from (7.10). The dashed
line is the growth calculated from the truncated model (7.30 and 7.31). This shows
that when the perturbation is small the system aligns with the linear growth rate,
until the nonlinear terms become dominant and the system begins oscillating while
exchanging energy between the eddies and the mean flow. The solid line is the result
for the full nonlinear system (run S4) which qualitatively follows the truncated model
but contains many modes and therefore does not have a pure oscillation .

In summary, the truncated model allows us to examine qualitatively the nonlinear
interactions which have several roles. First, they create an induced zonal flow with
a highly varying meridional structure which (as we show in section 7.6) may be
stronger than the eddies and therefore have the potential of becoming zonal jets.
Second, this induced flow stabilizes the growing perturbations. This “toy model”
provides a closed system of equations for the perturbation amplitude in both layers
and the change in the basic flow due to nonlinearities, without requiring the system
to be only slightly supercritical; for such cases the correction due to the nonlinearities
becomes significant (as opposed to being on the order of the departure from the
critical curve) and a strong multi-jet structure may emerge. Indeed, since the high
wave number instability dominates the two [ case, we might expect multiple jets for

a weak baroclinic shear.
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7.5 The Weakly Supercritical Limit

Most previous treatments of nonlinear baroclinic instability have required the system
to be weakly supercritical (e.g. Pedlosky, 1970). Instead, we have truncated the
system to one unstable mode. Here we present the truncated model in the limit
where the shear is taken to be just slightly supercritical. This limit corresponds to
the weakly supercritical theory of Pedlosky (1970), except that we allow for the more
general case of different layer depths and a variable 3. If we vary the value of the

critical shear by a small parameter A, so that it slightly exceeds the critical value
Us=U,+ A, (7.32)
then the imaginary part of the linear growth rate (7.10) becomes

Al
. B Ugk® (5% — AF\F. 7.33
. \/§h~,(,<.2+F1+F2){ o AP e

+ [(@2 — Hl) (l{4 - 2F1F2) + K2 (62F1 = /31 Fz)] }

o=

Thus it is proportional to Az. Therefore we follow Pedlosky (1970) and define a slow

time scale, T', such that

9 9 10 i

With these expansions we are able to obtain an analytic solution to the system of
equations (7.30,7.31). The small variation to the shear Uy — Uy + A leads to an

expansion of the operators in (7.30)
L = Ly + ALy, (7.35)

and we assume the system is weakly nonlinear so that N will be O (A). The op-
erators themselves are given in Appendix (B.2). We expand the potential vorticity

perturbation (7.7) as well

q=e"" g+ Abg + Mg+ 0 (a1)] (7.36)
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By the choice of ¢y as the neutral phase speed qg does not depend on t. Expanding
(7.30) in powers of Az, gives

0 (A) ;i (Lg—~algy=0 (7.37)
o 9
08) : gart+ik(Lo—cl)ai+ 5700 =0 (7.38)

o )
0 (A%) : 5+ ik (Lo — col) a2 + (7.39)

il ﬁ(h
+ik (L2 + quc) qo =0

Solving this system with the equation for the mean baroclinic correction (full solution
in Appendix (B.2)) gives an amplitude equation for the growth of the perturbation
o K*ZA+k*NA(JAP - 14(0))) =0 (7.40)
arz ’
where A is the amplitude of the perturbation and the nonlinear parameter N is the
Landau coefficient which is given also in Appendix (B.2). For very small amplitudes
the system thus reduces to the linear system. As the amplitude grows the cubic term
becomes more dominant and if N > 0 this term will act to slow the growth and
eventually reverse it. At a certain value of A this term will change sign and begin
increasing the growth, and thus a limit cycle is created. This type of oscillation is

seen in Figure 7.4.

7.6 Fully Nonlinear Model and the Generation of
Multiple Zonal Jets

The truncated model predicts a multi-jet structure for high wave number instability.
In this section we use a fully nonlinear numerical model to explore the role of the
other modes on the generation of eddies and jets, and on the effect of quasi-geostrophic
turbulence on these jets. The model we use is based on the same equations analyzed
in the previous sections. It is pseudo-spectral (Boyd, 2001), where each layer has
a spatial resolution of 64x128, is periodic in the zonal direction, and is confined
within a channel in the meridional direction. On the channel walls we require no

meridional flow and that the circulation is conserved (implemented by requiring the
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mean ageostrophic meridional velocity to vanish).

The parameter regime is fairly simple since we only set the layer depths (by setting
the nondimensional Froude numbers). the 3 parameters and the baroclinic shear. If
we were to fully compare the numerical model to the truncated model we would set
the shear in such a way that only one mode will be growing (see Figure 7.2). For
our standard run, following Dowling and Ingersoll (1989) and Ingersoll and Pollard
(1982) we choose the typical Rossby deformation radius to be on the order of 2000
km. This value corresponds to the observed scale of the jets on Jupiter. We take the
domain width to be an order of magnitude bigger then the deformation radius, thus
setting the upper nondimensional Froude number to be F|, = 100 (F, = ZL%). The
bottom layer is taken as to be 5 times as deep so that F, = 20. 3, is set according
to the curvature of Jupiter (5, = %%) giving the nondimensional value 8; = 10,
with the characteristic velocity being 50 m/s and the same typical horizontal length
scale of 2E4 km. Following the barotropic stability analysis by Ingersoll and Pollard
(1982) which shows that 3, is at least —33; we set (3, to this value. Their analysis
shows that this is a lower limit for stability and in fact a more negative lower layer 3

will be stable, but for our standard run we choose this limit. Unlike other models for

jets (Williams, 1979; Panetta, 1993; Vallis and Maltrud, 1993) we find in the upper

layer that the standard barotropic stability criterion Kuo (1949) is violated (Figure
7.14), much as we see in the observations, but the flow is still stable. We refer to
these values as our standard run (denoted with S and the run number - see Table
7.1), and experiment sets B and F show a sensitivity analysis to the parameters of the
standard run. The vertical shear is set so that several growing unstable modes exist,
as demonstrated in Figures 7.1 and 7.2. Since the two layer model is invariant under
translation (Pedlosky, 1987) it is only necessary to set the baroclinic shear U; — U,
and not the absolute values of the basic state velocities.

We begin all our experiments with a small random potential vorticity perturbation
field, with initial perturbations in all 7 multiple wave numbers up to k,[ = 107. Since
the system is forced by a constant vertical shear, eventually the system becomes
baroclinically unstable and the fastest growing mode dominates. We denote this
fastest growing mode with the notation k,,,[,, such that k = k,,m and | = [,,m. As
seen in Figure 7.4 the enstrophy begins growing in agreement with linear theory (since
the amplitude is small). When the effects of nonlinearity grow enough, the enstrophy

diverges from the theoretical linear growth curve as predicted by the truncated model.
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Figure 7.5: The induced zonal velocity as a function of the channel width. The
solid line is the theoretical baroclinic correction U (7.29) from the truncated model;
the circles are the result from the nonlinear numerical model (the 65 points are the
meridional resolution of the grid) towards the end of the baroclinic growth stage for
Uy, and the dashed line is the steady state of the numerical results after the inverse
energy cascade.

It can be seen that the nonlinear truncated model predicts quite precisely where this
separation takes place. Moreover, when we plot a snapshot of the top layer induced
zonal flow U; at this time from the numerical experiments (circles in Figure 7.5), it
matches well the truncated model theoretical prediction. The reason for this is that
as long as the growth of the perturbation is dominated by the fastest growing mode
according to the truncated model there is no induced barotropic velocity. From the

form of (7.14, 7.15) we can write the induced zonal velocity in each layer

- 1

=
RV

and therefore the induced zonal flow in each layer has the same structure as the

Uc +Ur Uy = —VéUc + Ur (7.41)

baroclinic induced zonal flow Uc. We see exactly a ratio of § between of the amplitude
of the induced zonal flow in the upper and lower layers.

In Figure 7.5 the analytic result of equation (7.29) is plotted for the cases of
meridional wave numbers m = 4,8 with the results from the full model for runs S2

and S14. The numerical results contain 65 points (the meridional resolution of the
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I Run H Fy 1/4 3, B Us Kmsdm 1/A n m

S1 100 3 10 -3 0.0263 10,8 7 1.87 011
52 0.0296 9.8 8:9 2.2 0.13
S3 0.0332 9,7 637 3.1 0.15
S4 0.0338 8.7 7.09 ST 0.13
S5 0.0372 10,4 6.25 3.33 0.13
S6 0.0385 8.7 5.79 2.54 0.17
ST 0.0413 10,3 .53 1.56 0.11
S8 0.044 8,6 5.44 3.18 0.25
S9 0.045 8.7 iyl 3.46 0.15
S10 0.0455 9.4 L1 3.26 0215
S11 0.0494 8.4 6.88 3.07 0.19
SI2 0.05 9,3 6.14 1.35 0.14
513 0.0525 9,2 4.28 3.2 0.28
S14 0.0562 8,4 6.5 2.94 0.22
S5 0.0612 o 6.92 1.94 0.36
S16 0.0622 8,3 5.63 2.36 0:31
SILT 0.0632 73 5.76 2.07 0.25
Bl 100 5 10 -10 0.1032 10,4 8.56 2.27 0.1
B2 -9 0.056 10,4 7.33 1.83 (N
B3 -2 00277 96 7.26 1.63 0.15
B4 =1 0.0183 9,6 5.92 0.73 0.16
B5 0 0.0088  none no jets 0 0
B6 1 0.0006  nonc no jets 0 0
I F1 100 1 10 -3 o 0.0382 10,4 o 6.15 0.48 0.21 i

2 10 0.037 9,7 10.25 2.78 0.11
F3 100 0.0369 8.5 6.04 0.51 0.03

Table 7.1: Numerical experiments using the fully nonlinear pscudo-spectral model. F)
is the Froude number for the upper layer; 4 is the laver depth ratio between the upper
and lower layer (and inverse of the Froude number ratio); 3, is the g-plane parameter
for the upper layver; B is the ratio ‘;—f ; Ug is the imposed baroclinic shear; k,,,1,, arc
the fastest growing baroclinic modes; A is the meridional spectral maximum of the
statistically steady state averaged across the channel (thus i gives an estimate for the
average number of jets), and 7 is the ratio of the induced zonal velocity amplitude to
the eddy amplitude (see text) in each laver.
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model) and are a snapshot of U, (which has the same structure as the Ue field (7.41))

taken just before the time when the two models diverge. Therefore, although the

t=10

0.04

0.02

-0.02

-0.04

Figure 7.6: Instantancous total zonal velocity fields at different times for the top
layer (run S5). Beginning with a random vorticity perturbation (a), then becoming
baroclinically unstable (b) dominated by the fastest growing mode (in this case &, =
10, 1, = 4), then several jets are formed (c¢) matching the prediction of the truncated
model, and cascading to stable jets (d) with a typical width on the order of the
Rhines scale. Full simulations of the zonal velocity field for this run are available at
http://lake.mit.edu/~glenn /vohai/movies.html

choice of only one mode in the truncated model scems initially quite restrictive for
a nonlincar prediction, in this type of instability scenario where the fastest growing
mode dominates until turbulence develops, the truncation is quite useful. After the
models diverge and more modes come into play, the truncated and the full numerical
models differ in the sense that there is no pure oscillation in enstrophy in the full
model as in the truncated model (although we can create such oscillations for special
weakly nonlinear cases), but rather a noisier (higher frequency) signal (Figure 7.4).
However, the amplitude in the two models is of the same order. Qualitatively, this

cquilibrium state is the same as scen in the truncated model for one mode, except
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Figure 7.7: Zonally averaged fields for the top laver at steady state (run S5). left:
potential vorticity (¢;): center: total zonal velocity (u)); right: streamfunction (¢)

that, as the energy cascades more modes appear, and the combination of them all
creates this leveling of the enstrophy. Figure 7.5 then also shows the final steady
state after the inverse cascade, showing distinet jets with a scale set by the baroclinic
induced zonal velocity Uy The jets have sharper castward than westward winds, due
to the asymmetry in the barotropic stability criterion (Figure 7.14).

The total zonal velocity in cach layer is composed of three components: the con-
stant basic flow creating the vertical shear, the induced zonal velocity ereated by the
nonlinear interaction U, and the !, eddy field . As the instability grows, the induced
zonal flow grows by many orders of magnitude and, as discussed above, forms into a
multi-jet structure. Once the growth is halted, and the enstrophy settles into equilib-
rinm, quasi-geostrophic turbulence causes the mean horizontal scales to increase. The
inverse cnergy cascade also affects the jets and the initial multi-jet structure (which
so far was determined only by the dominant growing<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>